Semitopological Lattice Ordered Group

Kamala Parhi* and Pushpam Kumari**

 * Associate Professor, Dept. of Mathematics, Marwari College, Bhagalpur T.M. Bhagalpur University, Bhagalpur
** Research Scholar, Univ. Dept. of Mathematics, T.M. Bhagalpur University, Bhagalpur

Abstract

In this paper we make a study of semitopological lattice ordered (lo) group – a notion weaker than the well known one of topological lattice ordered groups. A topological lattice ordered group is always a semitopological lattice ordered lo group. But the converce is not true as shown by example. We derive here conditions that imply a semitopological lo group is a topological lo group.

Keywords : lattice ordered group, semitopological lattice, homeomorphisms.

Introduction

G. Birkhoff [1] defined a topological lattice ordered group with specified convergence in which the following hold :

(i) $x_{\alpha} \to x, y_{\beta} \to y \Rightarrow x_{\alpha} \land \frac{y_{\beta} \to x}{y_{\beta} \to x} \land y$

(ii) $x_{\alpha} \to x, y_{\beta} \to y \Rightarrow x_{\alpha} \lor y_{\beta} \to x \lor y$

Semitopological lattice ordered group

Definition 1(a). A topological space that is also a lattice ordered group is called a semitopological lattice ordered (*lo*) group if the mapping

 $g_1: (x, y) \to x \land y$

of $G \times G$ onto G is continuous in each variable separately.

(b) A topological space that is also a lattice ordered group is called a topological lattice ordered group if the mapping g_1 is continuous in both the variables together and if the inversion mapping $g_2: x \to x^{-1}$ of G onto G is also continuous.

If the group operation is addition instead of multiplication, $x \wedge y$ and x^{-1} should be regarded as x + y and -x respectively. The identity of multiplicative group will be denoted by e that of an additive group by 0.

Preposition 1. Every topological lattice ordered group is a semitopological lattice ordered group. But the converse is not true.

Proof. The first statement is clearly true. To show that the converse is not true. Let L = R, the real line as an additive abelian group. Let *L* be endowed with a topology which has $\{[a, b) : -\infty < a < x < b < \infty\}$, the system of left closed and right open intervals as its base. Since for each

neighbourhood [a, b) of the identity $0, \left[a, \frac{b}{2}\right]$ is also neighbourhood of 0, it follows that the

mapping is continuous in both variables together at 0. It is seen that g_1 is continuous everywhere. Hence *G* is a semitopological lattice ordered group. However, the mapping $g_2 : x \to -x$ is not continuous at 0 because if [a, b) is a neighbourhood 0, then there is no neighbourhood *V* of 0 such that $-V \subseteq [0, b)$. Therefore, *G* is not a topological lattice ordered group. This completes the proof. If we put $UV = \{xy : x \in U, y \in V\}$ and $U^{-1} = \{x^{-1} : x \in U\}$, where U and V are subset of L and in the additive case $U + V = \{x + y, x \in U, y \in V\}$, $-U = \{-x : x \in U\}$, then the continuity of the mappings g_1 and g_2 can be expressed as follow :

 g_1 is continuous in x (or y) if, and only if, for each neighbourhood W of xy there exists a neighbourhood U (or V) of x (or y) such that $Uy \subseteq W$ (or $xV \subseteq W$). If L is abelian, then the right and left continuities $(x, y) \rightarrow xy$ in each variable are equivalent.

Moreover, g_1 is continuous is both x and y if, only if, for each neighbourhood W of xy there exists a neighbourhood U of x and a neighbourhood V of y such that $UV \subseteq W$. Similarly, g_2 is continuous if, and only if, for each neighbourhood W of x^{-1} , there exists a neighbourhood U of x such that $U^{-1} \subseteq W$.

It is easy to see that the mappings g_1 and g_2 are continuous in all their variables together if, and only if, the mapping

 $g_3: (x, y) \rightarrow xy^{-1}$

of $L \times L$ onto L is continuous.

Theorem 1. Let *a* be a fixed element of a semitopological lattice ordered group *L*. Then the mapping

 $\gamma_a: x \to xa$

 $l_a: x \to ax$

of *L* onto *L* are homeomorphisms of *G*.

Proof. It is clear that γ_a is a 1:1 and onto mapping. Let *W* be a neighbourhood of *xa*. Since *L* is a semitopological lattice ordered group, there exists a neighbourhood *U* of *x* such that $Ua \subseteq W$.

This show that γ_a is continuous.

Moreover, it is easy to see that the inverse of γ_a^{-1} of γ_a is the mapping $x \to xa^{-1}$, which is continuous by the same argument as above. Hence γ_a is a homeomorphism. The fact that l_a is a homeomorphism follows similarly.

 γ_a and l_a are respectively, called the right and left translations of L.

Corollary 1. Let *F* be closed, *P* an open, and *A* be any subset of a semitopological lattice ordered group *L* and let $a \in L$. Then

(i) aF and Fa are closed.

(ii) *Pa*, *aP*, *AP* and *PA* are open.

Proof. Since the mapping in theorem 1 are homeomorphisms, (i) is obvious. By the same argument, Pa and aP are open in (ii).

Since
$$AP = \bigcup_{a \in A} aP$$
,

 $PA = \bigcup_{a \in A} Pa$

are the union of open sets and is therefore open. (ii) is established.

Corollary 2. Let *L* be a semitopological lattice ordered group. For any $x_1, x_2 \in L$, there exists a homeomorphisms *f* of *G* such that $f(x_1) = x_2$.

Proof. Let $x_1^{-1}x_2 = a \in L$ and consider the mapping $f : x \to xa$. Then *f* is a homeomorphism by theorem 1 and $f(x_1) = x_2$.

A lattice for which Corollary 2 is true is called homogeneous lattice space.

Reference

[1] G. Birkhoff : Lattice Theory, AMS Publication, reprinted 1984, p. 248.
