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Abstract 

Deep Neural Networks (DNNs) have shown strong performance on complex learning tasks, 

especiallywhenlargelabeleddatasetsareavailable.However,theystrugglewithmappinginput sequences directly to output 

sequences. In this paper, the authors propose a general, 

end-to-end method for sequence learning that relies on minimal assumptions about the structure of sequences. Their 

approach uses a multi-layer Long Short-Term Memory (LSTM) networktoencodeaninputsequenceintoafixed-

sizevector,followedbyanotherdeepLSTM network that decodes this vector into an output sequence. 

AkeyresultoftheirstudyisthatthisLSTM-basedmodelachievedaBLEUscoreof34.8onthe fulltestsetforEnglish-to-

FrenchtranslationusingtheWMT’14dataset,despitebeingpenalized for generating out-of-vocabulary words. Notably, 

the model performed well even on long sentences. For comparison, a phrase-based Statistical Machine Translation 

(SMT) system scored 33.3 on the same dataset. 

FurtherimprovementwasobservedwhentheLSTMwasusedtorerankthetop1000translation hypotheses from the SMT 

system, raising the BLEU score to 36.5—close to the best result reported at the time.The LSTM also learned 

meaningful representations of phrases and sentences that were sensitive to word order and robust to changes like 

converting between active and passive voice. 

Interestingly, performance improved significantly when the order of words in the source 

sentenceswasreversed(whilekeepingtargetsentencesinnormalorder).Thiscreatedmore short-term dependencies between 

source and target sequences, which helped make the training process more effective. 

1. Introduction 

Deep Neural Networks (DNNs) are highly effective machine learning models that have demonstrated strong results on 

complex tasks like speech and visual object recognition. Their 

strengthliesintheirabilitytocarryoutcomplexparallelcomputationswithinalimitednumberof steps. For example, it has 

been shown that a neural network with just two hidden layers of quadratic size can sort N N-bit numbers—

highlighting the expressive power of DNNs. Though DNNs are related to traditional statistical models, they are 

capable of learning complex computations. When trained with supervised backpropagation and provided with 

sufficientlabeleddata,DNNscanlearnparametersettingsthatallowthemtoexcelattasksthatare relatively easy for humans 

to perform. 

However,amajorlimitationofDNNsisthattheytypicallyrequireinputandoutputtobe fixed-length vectors. This restricts 

their application to tasks where the structure can be 

compactlyrepresentedinthisway.Manyreal-worldproblems—likemachinetranslation,speech 

recognition,andquestionanswering—involvesequencesofvaryinglengths,makingitdifficultto apply traditional DNN 

architectures directly. As such, a general-purpose method that can learn to map sequences of arbitrary lengthto other 

sequences would be highly beneficial. 
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Sequences are challenging for standard DNNs because they demand a flexible input-output dimensionality. This paper 

presents a straightforward yet powerful approach to handling such tasks using the Long Short-Term Memory (LSTM) 

architecture. The approach involves using oneLSTMnetworktoreadandencodetheinputsequenceintoafixed-

sizevector,andanother LSTMtodecodethevectorbackintoanoutputsequence.ThesecondLSTMfunctionssimilarly to a 

language model but is conditioned on the encoded input. 

Thismethodisespeciallysuitedforproblemswithlong-rangedependenciesbetweeninputsand outputs, thanks to LSTM’s 

ability to remember information over extended time steps. Prior work has explored similar goals. For example, 

Kalchbrenner and Blunsom were among the first to encode an input sentence into a fixed vector, and Cho et al. 

applied similar ideas for re-ranking translation hypotheses. Additionally, Graves proposed a differentiable attention 

mechanism that inspired more advanced translation systems like that of Bahdanau et al. Another technique, 

Connectionist Sequence Classification (CTC), has also been used for sequence learning, though it relies on a 

monotonic alignment between input and output sequences. 

 

 

The key finding of this study is that, on the WMT’14 English-to-French translation task, the model achieved a BLEU 

score of 34.81 using an ensemble of five deep LSTM networks (each with384millionparametersand8,000-

dimensionalstates).Translationsweregeneratedusinga straightforward left-to-right beam search decoder. This score 

represents the highest result for directtranslationusinglargeneuralnetworkstodate.Forcomparison,astandardphrase-

based Statistical Machine Translation (SMT) system scored 33.30 on the same task. Notably, the LSTM model used a 

fixed vocabulary of 80,000 words, so any word not in this vocabulary led 

toapenaltyintheBLEUscore.Despitethislimitation,theLSTMoutperformedtheSMTsystem, indicating that even a 

relatively basic neural architecture with room for improvement can surpass traditional systems. 

Additionally,theLSTMwasusedtorescorethe1,000-besthypothesesgeneratedbytheSMT system,pushing the BLEU 

score up to 36.5—an improvement of 3.2 points over the baseline and nearly matching the previous best published 

score of 37.0. 

Interestingly, the LSTM handled long sentences well, even though similar architectures often 

strugglewiththis.Thesuccessislargelyattributedtoasimplebuteffectivestrategy:reversing the order of words in the 

source sentences during training and testing (while keeping the target sentences unchanged). This introduced short-

term dependencies that made learning easier and allowed the LSTM to optimize more effectively using stochastic 

gradient descent (SGD).This reversal trick is considered a key technical innovation of the paper. 

AnotherstrengthoftheLSTMmodelisitsabilitytorepresentvariable-lengthinputsentencesas fixed-size vectors. Since 

translation requires capturing the meaning of a sentence, the model is encouraged to produce embeddings where 

semantically similar sentences are close together in this learned space. Qualitative analysis shows that the model is 

sensitive to word order and robust to variations in sentence structure, such as active vs. passive voice.l 
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2. Themodel 

The Recurrent Neural Network (RNN) [31, 28] is a natural generalization of feedforward neural 

networkstosequences.Givenasequenceofinputs(x1,...,xT),astandardRNNcomputesa sequence of outputs (y1, . . . , yT ) 

by iterating the following equation: 

 

 

RecurrentNeuralNetworks(RNNs)arewell-suitedformappingsequencestosequenceswhen the alignment between the 

input and output is already known. However, they become challenging to apply when the input and output sequences 

are of different lengths and the relationship between them is complex or non-monotonic. 

A straightforward approach for handling general sequence-to-sequence problems is to use one RNN to encode the 

input sequence into a fixed-size vector, and then use a second RNN to decodethatvectorintotheoutputsequence—

anideaalsoexploredbyChoetal.[5].Whilethis setup theoretically provides the necessary information for the model to 

perform the task, it is difficult to train due to the long-term dependencies involved (see figure 1) [14, 4, 16, 15]. 

However,LongShort-TermMemory(LSTM)networks[16]arespecificallydesignedtohandle long-range temporal 

dependencies, making them a promising solution for this problem. 

The main objective of the LSTM in this context is to model the conditional probability 

p(y1,...,yT′∣x1,...,xT)p(y_1,...,y_{T'}|x_1,...,x_T)p(y1,...,yT′∣x1,...,xT),where(x1,...,xT)(x_1, 

...,x_T)(x1,...,xT)istheinputsequenceand(y1,...,yT′)(y_1,...,y_{T'})(y1,...,yT′)isthetarget 

sequence,whichmaydifferinlength.Theprocessinvolvestwosteps:first,theLSTMencodes the input sequence into a fixed-

length vector vvv, derived from its final hidden state. Then, a second LSTM acts as a language model, using vvv as its 

initial hidden state to generate the probabilitydistributionovertheoutputsequencey1,...,yT′y_1,...,y_{T'}y1,...,yT′. 

 

 

Inthisapproach,eachprobabilityp(yt∣v,y1,...,yt−1)p(y_t|v,y_1,...,y_{t-1})p(yt∣v,y1,...,yt−1)is calculated using a softmax 

function applied over the entire vocabulary. The LSTM architecture follows the design from Graves [10]. Importantly, 

each sentence must end with a special 

end-of-sentencetoken(―<EOS>‖),allowingthemodeltodefineaprobabilitydistributionover sequences of any length. 

Figure 1 illustrates this idea, where the LSTM processes the sequence ―A‖, ―B‖, ―C‖, ―<EOS>‖ to generate a fixed 

representation, which is then used to predict the sequence ―W‖, ―X‖, ―Y‖, ―Z‖, ―<EOS>‖. 

However,theactualimplementationofourmodeldiffersfromthisbasicsetupinthreekeyways: 

 

1. Separate LSTMs for Encoding and Decoding: We use one LSTM for encoding the input sequence and a 

separate LSTM for decoding the output. This not only increases 

thenumberofmodelparameterswithoutaddingsignificantcomputationalcost,butalso facilitates training on multiple 

language pairs at the same time [18]. 

2. DeeperArchitecturesPerformBetter:WediscoveredthatdeepLSTMsoutperform shallow ones. As a result, our 

model uses an LSTM with four layers. 

3. InputSentenceReversal:Acrucialimprovementwasreversingthewordorderofthe input sentence. For instance, 

instead of training the model to map ―a, b, c‖ to its 

translation―α,β,γ‖,wetrainittomap―c,b,a‖to―α,β,γ‖.Thisreversalalignsthe 

beginningoftheinputwiththebeginningoftheoutput(e.g.,―a‖iscloserto―α‖),which 

helpsthemodellearnmoreefficiently.ThissimplechangesignificantlyboostedLSTM performance. 
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3. Experiments 

We evaluated our approach on the WMT’14 English-to-French machine translation task using two main strategies. 

First, we used our model to translate input sentences directly, without relying on any traditional statistical machine 

translation (SMT) system. Second, we used our model to rescore the n-best candidate translations produced by a 

baseline SMT model. We reporttheperformanceofbothmethods,provideexampletranslations,andexplorethelearned 

sentence representations. 

3.1 DatasetDetails 

 

Fortraining,weusedtheWMT’14English-to-Frenchdataset.Ourtrainingsubsetincluded12 million sentence pairs, with 

approximately 348 million French words and 304 million English words. This dataset was chosen because it’s a 

cleaned and preprocessed version made available by [29], which also provides tokenized training and test data 

alongwith 1000-best translation hypotheses from the SMT baseline. 

Since neural language models rely on word embeddings, we used fixed-size vocabularies for each language. 

Specifically, we selected the 160,000 most frequent words for English (the 

sourcelanguage)andthe80,000mostfrequentwordsforFrench(thetargetlanguage).Words not found in these vocabularies 

were replaced with a special ―UNK‖ (unknown) token. 

3.2 DecodingandRescoring 

 

Themainfocusofourexperimentswastrainingalarge,deepLSTMusingnumeroussentence pairs. The training goal was to 

maximize the log-likelihood of producing the correct target sentence T given the source sentence S. In other words, 

the model was optimized to increase the probability of generating accurate translations. 

 

 

whereSisthetrainingset.Oncetrainingiscomplete,weproducetranslationsbyfindingthe most likely translation according 

to the LSTM: 

 

 

To find the most likely translation, we use a straightforward left-to-right beam search decoder. This decoder keeps 

track of a limited number BBB of partial hypotheses at each step, where each partial hypothesis is a prefix of a 

potential translation. At every timestep, each hypothesis in the beam is extended by appending every possible word 

from the vocabulary. Since this generatesalargenumberofnewhypotheses,weretainonlythetopBBBhypothesesbasedon 

their log probability scores. Once a hypothesis includes the special end-of-sentence token 

<EOS>,itisremovedfromthebeamandaddedtothesetofcompletetranslations.Althoughthis method is not exact, it is easy 

to implement. Notably, even with a beam size of 1, our model performs well, and most of the beam search's benefits 

are retained with a beam size of just 2 (as shown in Table 1). 

We also applied our LSTM to rescore the 1000-best candidate translations produced by the 

baselineSMTsystem[29].Foreachhypothesisinthelist,wecalculateditslog-likelihoodusing our LSTM and averaged this 

score with the one from the SMT system. 

3.3 ReversingSourceSentences 

 

Even though LSTMs are designed to handle long-range dependencies, we observed 
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significantlybettertrainingresultswhenwereversedtheorderofwordsinthesourcesentences (while keeping target 

sentences unchanged). With this reversal, test perplexity improved from 

5.8to4.7,andtheBLEUscorerosefrom25.9to30.6. 

 

Although we don't have a full explanation for why this works, we suspect it's because reversing the source sequence 

creates more short-term dependencies in the data. Typically, words in the source sentence are positioned far from their 

translated counterparts in the target sentence, leading to a high "minimal time lag" [17]. Reversing the source order 

doesn’t change the average word-to-word distance, but it reduces the time lag for the initial parts of the sentences. 

This makes it easier for the model to learn connections between source and target sequences 

duringbackpropagation,whichlikelyaccountsforthenotableimprovementintranslationquality. 

At first, we assumed that reversing the input sentences would only improve the model's 

confidencefortheinitialpartsofthetranslatedoutput,possiblyweakeningitspredictionstoward the end. However, we found 

that LSTMs trained on reversed input sequences performed significantly better on long sentences than those trained 

on the original order (see Section 3.7). This suggests that reversing the input helps the LSTM make more efficient use 

of its memory. 

3.4 TrainingDetails 

 

TrainingtheLSTMmodelsturnedouttoberelativelystraightforward.WeuseddeepLSTMswith 

4layers,eachlayercontaining1,000LSTMunitsand1,000-dimensionalwordembeddings.The input vocabulary had 

160,000 words, while the output vocabulary had 80,000. This means each sentence was represented using 8,000 

values. Deep LSTMs showed a clear advantage over shallow ones, with each additional layer reducing perplexity by 

nearly 10%—likely due to the increased capacity of the deeper models. A standard softmax was used over the 80,000-

word output vocabulary. The entire model had 384 million parameters, including 64 million dedicated to recurrent 

connections—32 million for the encoder and 32 million for the decoder. 

Keytrainingsettingsincluded: 

 

● InitializingallLSTMparametersusingauniformdistributionbetween-0.08and0.08. 

● Usingstochasticgradientdescent(SGD)withoutmomentum,startingwithafixed 

learningrateof0.7.After5epochs,wehalvedthelearningrateeveryhalf-epoch, training for a total of 7.5 epochs. 

● Trainingwasdoneinbatchesof128sequences,andthegradientwasscaled accordingly. 

● Although LSTMs typically avoid vanishing gradients, they can suffer from exploding 

gradients.Tomanagethis,weappliedgradientclipping:iftheL2normofthegradient s=∥g∥2 exceeded 5, we scaled it as s 

>5, we set g = 5g/s. 

● Since sentence lengths vary—most are between 20 to 30 words, while some exceed 100—

randomminibatchestendedtobeinefficient.Tosolvethis,wegroupedsentencesofsimilarlengthtogetherineachbatch,whichd

oubledtrainingspeed. 

 

 

3.5 Parallelization 

 

Initially, our C++ implementation of the deep LSTM (with the configuration described above) 

couldprocessaround1,700wordspersecondonasingleGPU.Thiswasn’tfastenough,sowe parallelized the model across an 

8-GPU system. Each of the four LSTM layers was run on a separate GPU, and activations were passed to the next 

layer immediately after computation. 

The remaining four GPUs handled the softmax computation, with each GPU responsible for 

multiplyinga1000×20,000matrix.Thisoptimizedsetupachievedaprocessingspeedof6,300 words per second (including 

both English and French words) with a minibatch size of 128. 

Overall,trainingthemodeltookabouttendaysusingthisparallelizedsetup. 
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3.6 ExperimentalResults 

 

WeassessedthetranslationqualityusingthecasedBLEUscore[24].Thiswascalculatedwith the multi-bleu.plscript on 

tokenized predicted translations and their referencecounterparts. This evaluation method aligns with those used in [5] 

and [2], and accurately reproducesthe33.3BLEUscorereportedin[29].Interestingly,whenweapplythesamemethod to 

evaluate the best-performing system from WMT’14 [9] (whose output isavailable at statmt.org/matrix), we obtain a 

BLEU score of 37.0, which is higher than the 35.8 reported on the website. 

ThemainresultsareshowninTables1and2.Thebestperformancecamefromanensemble of LSTM models—each 

initialized differently and trained with different random minibatch orderings. Although this ensemble’s direct 

translation results do not surpass the top WMT’14 system, it marks a significant achievement: this is the first time a 

fully neural machine translation system has outperformed a phrase-based SMT baseline on a large-scale 

machinetranslationtaskbyanotablemargin.Thiswasachieveddespitelimitations,suchas not being able to translate out-

of-vocabulary (OOV) words. 

 

 

 

 

WhentheLSTMmodelisusedtorescorethe1000-bestlistgeneratedbytheSMTbaseline,it achieves a BLEU score within 

0.5 points of the top WMT’14 system—highlighting its strong performance. 

3.7 PerformanceonLongSentences 

To our surprise, the LSTM model performed well even on longer sentences, as demonstrated 

bythequantitativeresultsinFigure3.Table3highlightssomeexamplesoflonginputsentences along with their corresponding 

translations. 
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3.8 ModelAnalysis 
 

 

 

Anotablestrengthofourmodelisitscapabilitytoconvertasequenceofwordsintoafixed-size vector. Figure 2 illustrates 

several of these learned representations. The visualization reveals that the model captures the importance of word 

order, yet remainsrelatively unaffected by switching between active and passive voice. These two-dimensional views 

were generated using Principal Component Analysis (PCA). 
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4. RelatedWork 

There has been substantial research on using neural networks for machine translation. Traditionally, the most 

straightforward and effective method has involved using RNN-based 

LanguageModels(RNNLMs)[23]orFeedforwardNeuralNetworkLanguageModels(NNLMs) 

[3]torescorethen-bestoutputsofastrongstatisticalmachinetranslation(SMT)system[22], which has consistently led to 

improvements in translation quality. 

More recently, efforts have been made to integrate source language information directly into 

theseneuralmodels.Forinstance,Aulietal.[1]enhancedanNNLMbycombiningitwithatopic model of the source sentence, 

leading to better rescoring performance. Devlin et al. [8] also incorporated an NNLM into the MT decoder, using 

alignment data to identify and feed the most relevant source words into the neural model—an approach that yielded 

substantial performance gains. 

Our approach closely aligns with the work of Kalchbrenner and Blunsom [18], who 

firstproposedconvertinginputsentencesintofixed-lengthvectorsandthendecodingthembackinto output sentences. 

However, they used convolutional neural networks (CNNs), which tend tolose word order information. Similarly, Cho 

et al. [5] employed an LSTM-style RNN to perform sentence-to-vector and vector-to-sentence transformations, 

although their main focus was on enhancing SMT systems. 

Bahdanauetal.[2]alsopursueddirectneuraltranslation,introducinganattentionmechanismto improve performance on 

longer sentences—an issue observed by Cho et al. [5]. Pouget-Abadie et al. [26] tackled the same challenge by 

translating sentence segments to produce smoother outputs, somewhat resembling a phrase-based model. We believe 

that training on reversed source sentences could provide them with similar benefits. 

End-to-endtrainingisalsoexploredbyHermannetal.[12],whousedfeedforwardnetworksto map inputs and outputs to 

nearby points in a vector space. However, their system cannot generate translations independently—it requires either 

a lookup from a pre-existing sentence database or the rescoring of candidate sentences. 

5. Conclusion 

In this study, we demonstrated that a large deep LSTM model—with a limited vocabulary and minimal assumptions 

about the structure of the task—can outperform a traditional SMT-based system, even one with an unlimited 

vocabulary, on a large-scale machine translation task. The strongperformanceofoursimpleLSTM-

basedmethodsuggestsitcouldbeeffectiveforawide range of sequence learning tasks, given sufficient training data. 

Interestingly,wefoundthatreversingthewordsinthesourcesentencessignificantlyimproved performance. This led us to 

conclude that encoding problems to increase the number of 

short-termdependenciescansimplifythelearningprocess.Notably,whilewestruggledtotraina standard RNN on 

unreversed input (as shown in Figure 1), we believe that reversing the 

sourcesentenceswouldmakesuchtrainingfeasible,thoughwedidnottestthisexperimentally. 

WewerealsosurprisedbytheLSTM’scapabilitytoaccuratelytranslatelongsentences.Initially, 

weassumedthatthemodel’slimitedmemorywouldhinderitsperformanceonlonger inputs—especially since similar 

models have shown poor results on such tasks [5, 2, 26]. 

However,ourLSTM,whentrainedonthereverseddataset,handledlongsentenceseffectively. 

 

Mostimportantly,weshowedthatastraightforward,relativelyunrefinedapproachcouldsurpass 

anSMTsystem.Thisindicatesthatwithfurtherdevelopment,evenbettertranslationresultsare achievable. Overall, our 

findings suggest that this method holds strong potential for tackling other complex sequence-to-sequence learning 

problems. 
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