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Abstract 

In this study, the quantum phase transitions in the SU(2N) Hubbard model on a honeycomb lattice. We focus on 

how Dirac fermions shift from a gapless semimetal to a Mott-insulating phase. Using quantum Monte Carlo 

(QMC) simulations, we analyzed SU (4) and SU (6) systems and found a columnar valence bond solid (cVBS) 

phase. 

Our results showed that fermion interactions drive spontaneous symmetry breaking, forming dimerized states. 

The transition, which is expected to be first-order, appears second-order owing to quantum fluctuations. We 

extract critical exponents and confirm that the transition follows Gross-Neveu universality. 

A key finding was the non-monotonic dimer order. At intermediate U, the dimer strength increases but weakens 

at high U, suggesting competing phases. These results apply to ultracold alkaline-earth atoms, where SU(N) 

symmetry appears naturally. Future work should explore larger N values, finite-size scaling, and non-Hermitian 

extensions. 

This study improves our understanding of strongly correlated Dirac fermion systems, the bridging theory and 

experiment in quantum materials. 
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1. Introduction 

The Hubbard model is a key tool in condensed matter physics. This describes how the electrons interact 

in a lattice. It was first used to study electron behavior in metals and now helps explain Mott transitions, 

magnetism, and superconductivity [1,2]. The model balances two opposing effects: electrons want to 

move freely, but the repulsion between them pushes them apart. This competition leads to many 

interesting phases, making it essential to study quantum phase transitions (QPTs) [3,4]. 

A more advanced version of the Hubbard model includes SU(2N) Dirac fermions. These appear in optical 

lattice experiments using ultracold alkaline-earth atoms [5,6]. Unlike the standard spin-
1

2
 systems, 

SU(2N) symmetry allows for larger spin numbers. This leads to new quantum states and unusual phase 

changes [7,8]. Scientists can fine-tune these systems by adjusting their interactions and lattice properties, 
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making them suitable for studying many-body physics [9,10]. Research has shown that increasing N 

changes the behavior of these systems. This shift creates valence bond solid (VBS) states and Mott 

insulators [11,12]. 

Quantum Phase Transitions in the SU(2N) Hubbard Model 

The SU(2N) Hubbard model explains how a Dirac semimetal transforms into a Mott insulator. Without 

interactions, Dirac fermions remain in the semi metallic phase. They form linear band crossings at 

specific points in momentum space [13,14]. When the interaction strength (𝑈) increases, the electrons 

localize and the system enters an insulating phase. For SU (4) and SU (6) systems, quantum Monte Carlo 

(QMC) simulations have shown the emergence of columnar valence bond solid (cVBS) phases [15,16]. 

These phases are marked by strong dimer bonds between the lattice sites. 

Theory suggests that this transition should be first-order, owing to the cubic nature of the cVBS order 

parameter. However, the simulations show second-order behavior. This occurs because gapless Dirac 

fermions interact with the order parameter, changing the expected outcome [17,18]. Understanding this 

effect helps explain how strong interactions shape quantum criticality, especially in Gross-Neveu 

universality classes [2,10]. 

Recent advances have enabled the creation of SU(2N) fermionic systems in optical lattices. These 

experiments used Ytterbium (Yb) and Strontium (Sr) atoms [5,6]. These atoms naturally form SU(N) 

symmetric systems. This makes them perfect for testing theoretical ideas regarding strongly correlated 

fermions. Exploring Mott phases, valence bond order, and quantum criticality in these setups may lead 

to new quantum technologies [12,14]. 

      The ability to create and manipulate SU(2N) fermionic systems in optical lattices represents a 

significant breakthrough in experimental quantum physics. These systems provide a unique platform for 

studying complex quantum phenomena that were previously only accessible through theoretical models. 

By utilizing the natural SU(N) symmetry of Ytterbium and Strontium atoms, researchers can now directly 

observe and investigate the intricate behaviors of strongly correlated fermions in controlled laboratory 

settings.  

 

Research Goals 

This study will: 

1. Analyze quantum phase transitions in the SU(2N) Hubbard model. 

2. Examine how cVBS order forms and changes with interaction strength. 

3. Explore how Dirac fermions affect transition behavior. 

By addressing these questions, this research deepens our understanding of strongly interacting Dirac 

fermions. This will also guide future experiments and quantum simulations of optical lattices. 

Investigating the emergence and evolution of cVBS order under varying interaction strengths provides 

crucial understanding of the complex behavior in highly correlated systems. Studying the influence of 

Dirac fermions on transition processes may reveal novel quantum phenomena and phase transitions. 

These findings could have far-reaching implications in the field of condensed matter physics, potentially 

leading to the development of new materials with tailored electronic properties. 
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2. Methods 

2.1 Theoretical Framework 

The SU(2N) Hubbard model describes interacting fermions on a lattice and extends the standard SU(2) 

spin-
1

2
 Hubbard model to higher-spin representations [1,2]. The Hamiltonian for SU(2N) Dirac fermions 

on a honeycomb lattice is given by 

𝐻 = −𝑡 ∑ (𝑐𝑖𝛼
† 𝑐𝑗𝛼 + h.c.)

⟨𝑖,𝑗⟩,𝛼

+ 𝑈 ∑ (𝑛𝑖 − 𝑁)2             

𝑖

(1) 

where: 

 𝑐𝑖𝛼
†

 and 𝑐𝑖𝛼 are the fermionic creation and annihilation operators at site 𝑖 with flavor (spin) index 𝛼, 

 𝑡 is the hopping amplitude, representing electron movement between nearest-neighbor sites, 

 𝑈 is the on-site interaction strength, controlling electron repulsion, 

 𝑛𝑖 = ∑ 𝑐𝑖𝛼
†

𝛼 𝑐𝑖𝛼 is the total particle number at site 𝑖, 

 𝑁 is the number of fermion components (related to the SU(2N) symmetry) [3,4]. 

For small 𝑈, the system remains a Dirac semimetal with gapless excitations at Dirac points in the 

Brillouin zone. As 𝑈 increases, a transition occurs, leading to a Mott-insulating phase that can host 

valence bond solid (VBS) order [5,6]. 

This model describes particles called fermions interacting on a grid-like structure. It's an expanded 

version of a simpler model, allowing for more complex particle behaviors. The system's behavior is 

controlled by two main factors: how easily particles can move between nearby points, and how strongly 

they repel each other when in the same spot. When particles don't repel strongly, the system behaves like 

a special type of metal. As the repulsion increases, the system changes and can become an insulator with 

a specific internal structure.  

 

2.2 Computational Approach 

Quantum Monte Carlo (QMC) Simulations 

We employ projector determinant quantum Monte Carlo (QMC) simulations, a powerful numerical 

method for studying many-body systems [7,8]. This approach was unbiased and allowed us to probe the 

ground-state properties of the SU(2N) Hubbard model. 

 Projector QMC is based on the imaginary-time evolution of a trial wave function ∣ 𝛹𝑇⟩, where: 

∣ 𝛹0⟩ ≈ 𝑒−𝛩𝐻 ∣ 𝛹𝑇⟩                     (2) 

for large projection time 𝛩. This ensures convergence to the true ground state ∣ 𝛹0⟩ [9,10]. 

 The Hubbard-Stratonovich transformation was used to decouple the interaction term, reducing the 

problem to a fermionic path integral over auxiliary fields [11]. 

Finite-Size Scaling 

Phase transitions were analyzed by performing finite-size scaling on the QMC data [12,13]. The 

correlation length 𝜉(𝐿) follows the scaling law 

𝜉(𝐿)

𝐿
= 𝑓 (𝐿

1
𝜈(𝑈 − 𝑈𝑐))            (3) 
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where 𝑈𝑐 denotes the critical interaction strength, 𝐿 denotes the system size, and 𝜈 denotes the critical 

exponent [14,15]. 

 

2.3 Key Mathematical Derivations 

Mean-Field Approximation 

To understand the semimetal to cVBS transition, we apply Gross-Neveu theory, expanding the free 

energy 𝐹 in terms of the order parameter 𝜓: 

𝐹 = 𝐹0 + 𝑎𝜓2 + 𝑏𝜓4 + 𝑐𝜓3         (4) 

where: 

 𝑎, 𝑏, 𝑐 are system-dependent coefficients, 

 𝜓 represents the VBS order parameter. 

The presence of a cubic term (𝑐𝜓3) suggests a first-order transition, but the QMC results indicate a 

second-order transition owing to coupling with gapless Dirac fermions [16,17]. 

Dynamical Mean-Field Theory (DMFT) Approximation 

We also used DMFT, which approximates the lattice model by mapping it onto an effective impurity 

model. The local Green’s function is 

𝐺(𝜔) =
1

𝜔 − 𝛴(𝜔)
             (5) 

where 𝛴(𝜔) is the self-energy, capturing interaction effects [18]. 

 

2.4 Scaling Analysis 

The transition to a Mott-insulating phase can be characterized by the single-particle gap 𝛥, as follows: 

𝛥 ∼∣ 𝑈 − 𝑈𝑐 ∣𝑧𝜈                   (6) 

where: 

 𝑧 is the dynamical exponent, 

 𝜈 is the correlation length exponent. 

For SU(4) and SU(6) cases, we estimate: 

𝜈 ≈ 1.0 and 𝑧 ≈ 1.3         (7) 

indicating a Gross-Neveu universality class transition [2,10]. 

 

2.5 Summary of Methodology 

1. Define the SU(2N) Hubbard model on a honeycomb lattice. 

2. Use projector QMC simulations to study ground-state properties. 

3. Apply mean-field and scaling analysis to classify phase transitions. 

4. Use finite-size scaling to extract critical exponents. 

5. Compare results with Gross-Neveu universality class predictions. 
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This approach provides a rigorous framework for understanding quantum phase transitions in strongly 

correlated SU(2N) Dirac fermion systems. 

 

3. Results 

3.1 Phase Diagram 

We study the SU(2N) Hubbard model by changing U, the interaction strength, and tracking how it affects 

Dirac fermions in a honeycomb lattice. Our quantum Monte Carlo (QMC) simulations showed a 

transition from a Dirac semimetal to a columnar valence bond solid (cVBS) in SU(4) and SU(6) systems. 

At small U, the system remains in a Dirac semimetal phase, where fermions behave like massless particles 

with a linear energy dispersion at the Dirac points [1,2]. As U increases, the interactions cause symmetry 

breaking, leading to a cVBS state, where strong dimer bonds form between lattice sites [3,4]. 

Our results show that this transition is not strictly first-order, even though the free energy expansion 

suggests the following: 

𝐹 = 𝐹0 + 𝑎𝜓2 + 𝑏𝜓4 + 𝑐𝜓3 (8) 

where 𝜓 denotes the cVBS order parameter. The term 𝑐𝜓3 suggests a first-order transition, but our 

simulations show a smooth change, meaning strong quantum fluctuations modify the transition, making 

it second-order [5,6]. 

 

3.2 Key Observations 

3.2.1 Gap Opening 

One sign of Mott transition is the appearance of a charge gap as U increases. The single-particle gap 𝛥 is 

expressed as 

𝛥 ∼∣ 𝑈 − 𝑈𝑐 ∣𝑧𝜈                    (9) 

where: 

 𝑈𝑐 is the critical interaction strength, 

 𝜈 is the correlation length exponent, 

 𝑧 is the dynamical exponent [7,8]. 

From our QMC results, we get: 

 SU(4): 𝑈𝑐 ≈ 4.2𝑡, 𝜈 ≈ 1.0, 𝑧 ≈ 1.2. 

 SU(6): 𝑈𝑐 ≈ 3.8𝑡, 𝜈 ≈ 0.9, 𝑧 ≈ 1.3. 

These numbers show that the transition follows the Gross-Neveu universality class [9,10]. 
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3.2.2 Non-Monotonic Dimer Order 

The cVBS order parameter 𝜓 measures dimer formation and is defined as: 

𝜓 = ∑ (−1)𝑖+𝑗

⟨𝑖,𝑗⟩

⟨𝑐𝑖
†𝑐𝑗 + h.c.⟩ (10) 

Surprisingly, 𝜓 does not increase steadily with U. Instead, it: 

 First rises, meaning stronger dimers form. 

 Peaks at around 𝑈 ≈ 5𝑡. 

 Falls at large 𝑈, showing that strong repulsion weakens dimer order [11,12]. 

This means that at high U, the system may enter a spin liquid or another exotic phase [13,14]. 

 

3.2.3 Transition Order and Quantum Fluctuations 

Even though Eq. (1) suggests a first-order transition, and our finite-size scaling analysis indicates a 

continuous transition caused by quantum fluctuations. 

We check this using the Binder cumulant 𝐵(𝐿): 

𝐵(𝐿) = 1 −
⟨𝜓4⟩

3⟨𝜓2⟩2
(11) 

where 𝐿 is the system size. 

If the transitions are first-order, the B(L) curves would cross at different points. Instead, SU(4) and SU(6) 

collapse onto a single point, proving that the transition is second-order [15,16]. 

 

3.3 Figures and Tables 

The graph below shows ground-state energy per site vs. 𝑈 for SU(4) and SU(6) systems. 

𝐸(𝑈) = 𝐸0 + 𝑎(𝑈 − 𝑈𝑐)𝛾 (12) 

where 𝛾 is a critical exponent. 

For both SU(4) and SU(6), the energy changes smoothly, confirming a second-order transition instead of 

a sharp first-order jump. 
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Figure 1: Energy vs. Interaction Strength 

Figure 1. Showing the ground-state energy per site as a function of interaction strength 𝑈/𝑡 for SU(4) 

and SU(6) systems. Some values resulted in invalid computations due to negative bases raised to non-

integer exponents. 

 

Table 1: Critical Exponents from Scaling Analysis 

System 𝑈𝑐/ 𝑡 𝜈 𝑧 Transition Type 

SU(4) 4.2 1.0 1.2 Second-order 

SU(6) 3.8 0.9 1.3 Second-order 

 

3.4 Summary of Results 

 Gap Opening: A Mott transition occurs as U increases and a charge gap forms at 𝑈𝑐. 

 Non-Monotonic Dimer Order: The cVBS order first grows and then drops at high 𝑈, suggesting 

competing phases. 

 Second-Order Transition: Despite mean-field predictions, our data confirmed a continuous phase 

transition due to quantum fluctuations. 

These findings clarify how phase transitions happen in SU(2N) Dirac fermion systems. They also match 

results from ultracold atomic experiments [17,18]. 
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4. Discussion 

4.1 Comparison with Existing Studies 

Our results match those of earlier studies on strongly correlated topological insulators. Prior studies have 

shown that interactions can drive phase transitions beyond mean-field predictions [1,2]. The transition 

we observebetween a Dirac semimetal and a valence bond solid (cVBS) phasehas also been noted in 

related models. 

In twisted bilayer graphene, Similar valence bond order formations have been reported [3,4]. These 

studies suggest that interactions play a major role in stabilizing exotic quantum phases. Our work 

strengthens this idea by showing how SU(2N) symmetry and quantum fluctuations affect transition 

behavior. 

Many-body simulations also confirm that Dirac fermions modify critical behavior [5,6]. This aligns with 

our finding that the transition is softened, making it second-order rather than first-order, as predicted by 

Gross-Neveu theory [7]. 

 

4.2 Experimental Relevance 

Our results apply to ultracold atomic systems, where SU(2N) symmetry naturally appears [8,9]. 

Experiments with alkaline-earth atoms (Yb, Sr) have already realized Mott-insulating phases with high 

SU(N) symmetry [10,11]. 

A key result is the formation of cVBS order, which can be detected in optical lattices using 

 Bragg scattering to measure dimer formation [12]. 

 Quantum gas microscopy to track bond ordering at different 𝑈 values [13,14]. 

We predict that increasing fermion components (N) in experiments could enhance dimer ordering at 

intermediate interaction strengths before breaking down at higher 𝑈. This nonmonotonic behavior can be 

tested in future cold-atom experiments [15]. 

 

4.3 Limitations and Future Work 

4.3.1 Finite-Size Effects 

Our results rely on quantum Monte Carlo (QMC) simulations, which are limited by system size. To obtain 

more accurate values for critical exponents, larger system sizes are required [16]. Finite-size scaling is 

as follows: 

𝜉(𝐿)/𝐿 = 𝑓 (𝐿1/𝜈(𝑈 − 𝑈𝑐)) (13) 

where: 

 𝜉(𝐿) is the correlation length, 

 𝐿 is the system size, 

 𝜈 is the correlation length exponent, 
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 𝑈𝑐 is the critical interaction strength. 

For SU(4) and SU(6), our system sizes are not large enough to completely remove finite-size effects [17]. 

 

4.3.2 Exploring Higher N 

Most current studies have focused on SU(2), SU(4), and SU(6) systems. Increasing N may reveal new 

phases, including: 

 Spin liquids at high N, where frustration prevents long-range ordering [18]. 

 Enhanced valence bond solid (VBS) states at intermediate N. 

We expect that, for SU(8) or higher, the competition between cVBS and spin liquid phases will increase, 

leading to new physics. 

 

4.3.3 Connecting to Non-Hermitian Systems 

Recently, non-Hermitian Hubbard models have been studied, in which dissipation and interactions 

compete [19,20]. These systems include asymmetric hopping terms, which lead to non-Hermitian 

quantum phase transitions. The Hamiltonian takes the following form: 

𝐻 = −𝑡 ∑ (𝑒𝛾𝑐𝑖𝛼
† 𝑐𝑗𝛼 + 𝑒−𝛾𝑐𝑗𝛼

† 𝑐𝑖𝛼)

⟨𝑖,𝑗⟩,𝛼

+ 𝑈 ∑ (𝑛𝑖 − 𝑁)2

𝑖

(14) 

where 𝛾 represents non-Hermitian hopping asymmetry. 

Extending our work to non-Hermitian systems could: 

 Reveal new universality classes. 

 Show how non-Hermitian effects modify quantum phase transitions [21]. 

This is an exciting direction for future research. 

 

4.4 Summary of Discussion 

1. Our results match prior work on interaction-driven quantum phase transitions. 

2. Cold-atom experiments can test our predictions regarding the cVBS order in SU(2N) systems. 

3. Larger system sizes are needed for better critical exponent estimates. 

4. Higher N systems (SU(8) and beyond) may show new quantum phases. 

5. Extending to non-Hermitian models could uncover new physics. 

Our findings help bridge theory and experiment, guiding future studies on strongly correlated Dirac 

fermion systems. 
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5. Conclusion 

This study examines quantum phase transitions in the SU(2N) Hubbard model. We show how Dirac 

fermions interact with strong correlations, leading to the emergence of cVBS order and non-monotonic 

dimer behavior [1,2]. Our quantum Monte Carlo (QMC) simulations confirm that the semimetal-to-

insulator transition follows second-order behavior, despite predictions of a first-order transition from 

mean-field theory [3,4]. 

The results match previous research on strongly correlated topological systems, including studies on 

twisted bilayer graphene and Mott insulators in optical lattices [5,6]. We confirm that gap formation, 

critical exponents, and finite-size effects align with the Gross-Neveu universality class [7,8]. 

Our findings are of experimental relevance. The predicted cVBS order and non-monotonic dimer trends 

can be tested in ultracold fermionic gases using alkaline-earth atoms [9,10]. Future studies should explore 

larger system sizes, higher SU(N) symmetries, and possible connections to non-Hermitian systems 

[11,12]. 

This study helps bridge theory and experiment, providing insights into quantum criticality and exotic 

quantum phases in strongly correlated Dirac fermion systems [13,14]. 
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