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Abstract 
A Monte Carlo algorithm for extracting contours in 2D images is proposed in this paper. A multiple model 

Particle Filter (PF) for progressive contour growing (tracking) from a starting point is designed, accounting for the 

convex, noncircular form of delineated areas. The algorithm relies on image intensity gradients as measurements 

and requires information about four manually selected points: the seed point, the starting point, arbitrarily selected 

on the contour, and two additional points, bounding the measurement formation area around the contour. The filter 

performance is studied by segmenting contours from series of simulated ultrasound medical images and Ground 

Penetrating Radar (GPR) images. 

1. Introduction 

The problem of automated or semi-automated contour following can be considered from a probabilistic point 

of view: the contours are realizations of a stochastic process driven by both an inner stochastic dynamics, and a 

statistic data model [1]. The Bayesian methods for tracking provide a probabilistically consistent way for 

combining prior information with data to produce efficient solutions. A number of tracking techniques are 

proposed for contour extraction and successfully applied to medical images, such as Kalman filtering, multiple 

hypothesis tracking, combined interacting multiple model (IMM) estimation and probabilistic data association 

filtering (PDAF) [2]. 

A robust particle filtering algorithm for contour following is developed in [1]. The potential of this algorithm 

(called Jetstream) is demonstrated in the context of the interactive cut-out in photo- editing applications. Jetstream 

is a general tool for designing contour tracking algorithms in different application areas. The designer has the 

freedom to choose appropriate task oriented ingredients: dynamics and measurement models, likelihoods or 

likelihood ratios and constraints. 

This paper investigates further the capabilities of Jetstream for the purposes of segmentation in ultrasound 

medical and GPR images. The new elements of the proposed algorithm, compared with Jetstream [1], include: 1. 

implementation of a multiple model structure of the prior dynamics, governing the predicted contour growing; 2. 

combined likelihood based on the intensity gradient and second order directional derivatives; 3. incorporation of 

constraints accounting for the convexity of the contour. 

2. Contour Tracking by Particle Filtering 

Consider a state vector x , containing points x in the image plane Λ  R 2 . Any ordered sequence 

x0:n  (x ,…, x ,…, x )  Λ n 1 uniquely defines the contour being tracked [1]. Given the prior state 

probability density function p(xk 1 | x0:k ) , modeling the expected evolution of the contour, the aim 

is  to  enlarge  the  sequence,  using  the measurement  data  model p(y | x0:n ) .  Often  the 

measurement y(xk ) is the gradient norm of image intensity |  I(xk ) | . 

Assuming a first-order dynamics p(xk 1 | x0:k )  p(xk 1 | xk ), k  1, a prior state density on Λn 1 
is 

given by p(x0:n )  p(x0 )
n 

p(xk | xk 1 ) . The measurement data conditioned on x0:n , are 
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approximated by an independent spatial process p(y | x0:n )   p(y(u) | x0:n ) , where 
u  

  Λ is a 

discrete set of measurement locations in the image plane, including the x k  locations. Each term 

(likelihood) in the product is pon if the pixel u belongs to x0:n , or poff  if u is out of the contour [1]: 

p(y | x )    p (y(u))
n 

p  (y((x ) | x )   p (y(u))
n pon (y((xk ) | x0:n ) 

 

0:n 
u \x0:n 

off k 0  on k 0:n 
u  

off k 0 poff 
(y((xk )) 

Up to a multiplicative factor independent from represented by x0:n , the posterior state density on Λn 1  
is 

pn (x0:n | y)  p(x0 )
n 

p(x k | x k 1 

n 

k 0 
ℓ(y(xk )), (1) 

where ℓ  pon  poff denotes the point-wise likelihood ratio.  If the starting point is picked by 

the 

user, the density p(x0 ) is a Dirac mass centered at this location. The contour extraction problem, 

expressed as the minimisation of the function n (x0:n , y)   logpn(x0:n | y) can be solved by finding the 

maximum a posteriori (MAP) estimate of the posterior state probability density function (pdf). 

Following the Bayesian methodology, the state pdf (1) can be recursively calculated according to 
the relationship 

pk 1 (x0:k 1 | y)  ℓ(y(xk 1 )) p(xk 1 | xk ) pk (x0:k | y) 

.

 

(2) Analytical solution to (1) is intractable. Within the sequential Monte Carlo framework, the posterior 
density pk (x0:k | y) is approximated by a finite set  {x }, j  1,…, N of N sample 
paths 

( j ) 

(particles). The generation of samples from pk 1 (x0:k 1 | y) is obtained in two steps of prediction 

and update, thoroughly explained in the specialised literature [3]. At the prediction (importance 

sampling) step, each path 
( j ) 

0:k is grown of one step ~ ( j ) 0:k 
1 by sampling from the proposal density 

function q(x k 1 | x )  p(x | x ) . At the update step, each sample path (contour) is associated 
( j ) ( j ) 
k 1 

with a weight, proportional to the likelihood ratio of the measurements w( j)  w( j )ℓ(y(~x ( j) )) . The 

 

set of weighted paths 

 

{~x ( j ) ,w~ ( j ) }, j  1,…, N 

k 1 

with normalised weights 

k 

w~ ( j )  w ( j 

) 

k 1 

N 
 

w ( j ) 

provides an approximation to the distribution pk 1 (x0:k 1 | y) . When an estimate of the effective 

sample size 

 

Neff 

N 

j 1 
( w~  ( j ) ) 

2 

falls below a threshold Nthresh , resampling is realised to avoid 

possible degeneracy of the sequential importance sampling [3]. Based on the 

discrete 

approximation of the posterior pdf pk 1 (x0:k 1 | y) , an estimate of the ‘best’ path (contour) at step 

k  1 can be obtained. The path of a maximum weight (before resampling) provides an 
approximation of the MAP estimate. The mean Ε(x | y)  

N  
w ( j) ~x ( j) is a Monte 

Carlo 

 

approximation of the posterior pdf expectation. 

0:k 1 j 1 k 1  0:k 1 

)

x 

0:k k 

 1 

0:k 
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Fig.1. a) The sampling angle between radii k  and k 1 . The points xs , x0 , xmin , xmax  are 

manually selected by the mouse. b) The result of ultrasound lesion segmentation. 

Let x s  (xs , y s )T be the location of the seed point in the Cartesian coordinate frame, centered at 

the left and low corner of the image (Fig.1.a). Let d  (d ,  )T be the location of an arbitrary image 

point in the relative polar coordinate system, centered at the seed point. Consider the following model of a 

discrete-angle jump Markov contour dynamics 

dk 1  F dk  G uk 1 (mk 1 ) 

 

B vk 1 (mk 1 

), 

(3) 

where d k  (d ,  )T is the base (continuous) state vector, representing contour point coordinates 

along the radius k , F is the state transition matrix and uk is a known control input. The process 

noise vk (mk ) is a white Gaussian sequence with known variance vk ~ N (0,  2 (m )) . The modal 

(discrete) state mk  S  {1, 2,…, s} , characterising the different system models, is evolving 

according to a Markov chain with known transition probabilities  ij  Pr{mk 1  j | mk  i}, (i, j  S ) 

and initial probability distribution P0 (i)  Pr{m0  i} . 

Denote the sampling angle between the subsequent radii as   . The control input of the form 

u (m )  (  d (m ),   )T governs the changes in the state. Suppose that the mode set S 

contains s  3 elements. Each model in the set corresponds to a fixed, predetermined distance 

increment  dk 1 (mk 1 ) :  dk 1  0 (m  1) models the “move” regime along the circle, since the 

distance dk does not change. The increments  dk 1 (for m  2, 3 ) are constants corresponding to 

the distance increase or decrease, respectively. The process noise vk  models perturbations in 

 dk 1 . The matrices F, G, B have a simple form: F  G  (1 0 ; 0 1) , B  (1 0)' . In the framework 

of this model, the state vector x   (x , y , d ,  )T contains both the Cartesian coordinates of 

contour point according to the left-down image corner and the polar coordinates, according to the internal seed 

point. 

Constraints. Taking into account the proposed convex form of the contour, the area of measurement 

formation is bounded by an inner circle and an outer ellipse (Fig.1.a). Two points, 

xmin and xmax , chosen by the mouse, determine the gating area. The distances d max and dmin of 

the points in the polar coordinate system correspond to the major semi-axis of the ellipse Remax 

and the circle radius Rc respectively. The variable   Remax  Rc is a design parameter. The minor 

semi-axis of the ellipse is calculated according to the relationship  Remin  Rc  2 / 3Remax . 

Suppose that a cloud of N  particles ~ ( j ) 0:k 
1 

, j  1,…, 

N 
is predicted at the angle step k 1 , 

x 
 



 

xs 
x 

 
x 
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according to the state evolution equation (3). At this stage, constraints are imposed in such a way, that particles 

outside the boundaries, accept the coordinates of the boundaries. Then, a likelihood ratio is computed for each 

particle point, situated inside the boundaries. 

Likelihood ratio ℓ . The gradient norm of image intensity |  I(x k ) | is a principal likelihood 

component. According to the definitions introduced in Sec. 2, we have explored the gradient norm distribution 

both off contours ( poff ) and on contours ( pon ) over a series of images. The empirical distribution of the gradient 

norm off contours (on the whole image data) confirmed the results, 

obtained in [1]. The gradient norm distribution can be approximated by an exponential distribution with a 
parameter  , which is the average gradient norm. 

However, the empirical distribution of the joint gradient norm and gradient direction on the contour pon , 

obtained and implemented in [1], is not satisfactory in our application. For the purposes of GPR image 

segmentation, we found that the square root of gradient norm is a suitable 

pon measure. In regard to the medical images, we adopt an approach of combining the gradient 

norm and an edge detection algorithm, proposed in [2]. The aim is to utilise gradient information 

simultaneously along the x  y axes and along the radii, projected from the seed point, in order to 

improve the edge detection sensitivity. 

Note that N predicted particles ~ ( j ) 0:k 
1 

j  1,…, N are located along the radius, determined by the 

angle k 1 in the relative polar coordinate system. Let N c candidate edge points ri  (di , k 1 )T , 

i  1,…, Nc , satisfying the imposed constraints, are selected on the segment. The edge 

magnitude of each point ri is calculated according to [2] 

Fedge (di , k 1)  1 3 { I(di  2 r, k 1)  I(di  r, k 1)  I(di , k 1)  I(di  r, k 1)  

I(d  2 r,  )  I(d  3 r,  ) }(1  I(d ,  ))2, 

where r is a differential radial increment from di along the radius (design parameter) and I(ri ) 

is the local gray-level image intensity. The edge point with a maximum

 magnitude 

rm  max{ Fedge (ri ), i  1,…,N c } takes part in the likelihood ratio computation. We propose two 

different likelihoods US and 
GPR 

on for ultrasound and GPR images, respectively 

 
~( j ) 2  

pUS ( ~x  ( j) )  |  I ( ~x ( j) ) |2 exp  
(dk 1  dm )  

; pGPR ( ~x  ( j ) )  

on k 

1 

k 1  

 
|  I(~x ( j) ) | 

2  2

 

 

on k 1 

p (~x ( j) )  exp   k 1  ; ℓ(~x ( j) )  p (~x ( j) ) / p (~x ( j) ) ; 
w( j )  w( j )ℓ(y(~x ( j) )) , 

off 

 where 

k 1 

~x ( j )  
 ~( j ) 

 
~( j ) 

 ~( j ) 
 ~( j ) T 

k 1 on k 

1 
off k 1 

 T 

k 1 k 

 2 

k 1 

k 1 (xk 1 , yk 1 , dk 1 , k 1 ) , j  1,…, N , rm  (dm , k 1 ) and  e is a design 

parameter. 

The updated by the likelihood ratio ℓ ( ~x  ( j) ) particle weights w ( j) , j  1,…, N  take part in the 

calculation of the updated contour estimate x̂  
N 

w ( j ) ~x ( j) . 

 

 

0:k 1 j 1 k 1 0:k 1 

|  I(x ) | ~ ( j ) 

k 1 

p p 

, 
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Fig.2. a) The extracted contours and b) The points in the gate with a maximum edge 

magnitude 
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Fig.3. a) A horizontal slice of a C-scan, acquired at 1.39 nsec after the GPR signal emission [7]; 

b) Delineated contour of a mine target 

3. Conclusion 

A multiple model PF for contour determination in ultrasound medical and GPR images is designed and 

implemented. The filter performance is studied on a number of simulated ultrasound medical images, obtained by 

the simulation program Field II. It is also tested on the GPR images, published in the specialised literature. The 

proposed filter has shown encouraging results in terms of convergence and accuracy, achieved at the cost of 

acceptable computational complexity. It offers an alternative solution to this important and difficult problem. 
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