Privacy Preserving And Dynamic Key Management For Key Aggregate System In Large Cloud Auditing System

Mr. SIRAJDDOLA NADAF Lecturer

Dept of Computer Science and Engineering. Government Polytechnic BILAGI, Karnataka, India.

ABSTRACT - Data sharing is an important functionality in cloud storage. In this paper, we show how to securely, efficiently, and flexibly share data with others in cloud We describe new public-key storage. cryptosystems that produce constant-size ciphertexts such that efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that one can aggregate any set of secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known.

1. INTRODUCTION

Cloud computing expandable give a environment for increasing quantity of data in different Peers and method that work on a variety of applications on-demand self service. The main advantage of cloud computing is that data are being centralized and out sourced in clouds. This type of outsourcing storage space in clouds has become a new revenue increase by providing a cheap price, extendable, location without depending on other operating systems for supervision clients' information. CSS ease load on storage space supervision and safeguarding. These security problems take place from the subsequent motive: the cloud communications are a great deal for trustworthy than individual work out procedure. However, they are still facing some sort of inside and outside intimidation; there exist a variety of inspiration for CSP to act faithlessly towards the cloud consumer; in addition, disagreement infrequently experience from a be short of belief on CSP. So, actions may not be identified by the cloud consumer, conflicts may possibly

effect from client own offensive operations. So, it is important for cloud resource providers to suggest proficient inspection facility to make sure the integrity and accessibility of the data which is in database.

Inside this project, we bring in a lively inspection facility for truthfulness proof of un trusted and contract out storage space. In this audit method, we provide new audit system be able to carry active data actions and well-timed uncharacteristic findings with the assist of other practices, like fragmentation, casual samples, and indexing and hashing tables. in addition, we put forward well-organized approach based on enquiry and episodic substantiation getting better act of audit tasks. The sample is also implementing to assess the practicality of our planned loom. Our tentative out puts not only legalize the efficacy of our approaches, nevertheless it give you an idea about our system has a a good deal for lesser working out fee, as well as a tiny the additional storage for truthfulness proof.

1.1 Purpose of the project

In this project, vital facts that have to be deal i.e. promise the customer about integrity of data in the cloud environment. As the data is actually not reachable to the user cloud ought to offer consumer to confirm if the truthfulness or integrity of his data is keep

1.2 Motivation

As the cloud storage technologies has become the need of an hour, Securing data in cloud storage has become a great deal last few years and as so lots of R & D are going on in order to accomplish stronger security and because the data is actually not easy, get to the user the cloud have to make available to the user, make sure if the integrity data is protected.

2. EXISTING SYSTEM

Considering data privacy, a traditional way to ensure it is to rely on the server to enforce the access control after authentication, which means any unexpected privilege escalation will expose all data. In a sharedtenancy cloud computing environment, things become even worse.

Regarding availability of files, there are a series of cryptographic schemes which go as far as allowing a third-party auditor to check the availability of files on behalf of the data owner without leaking anything about the data, or without compromising the data owners anonymity. Likewise, cloud users probably will not hold the strong belief that the cloud server is doing a good job in terms of confidentiality.

A cryptographic solution, with proven security relied on number-theoretic assumptions is more desirable, whenever the user is not perfectly happy with trusting the security of the VM or the honesty of the technical staff.

2.1 DISADVANTAGE OF EXISTING SYSTEM

1. The costs and complexities involved generally increase with the number of the decryption keys to be shared.

2. The encryption key and decryption key are different in public key encryption.

3. There is no system to generate unique key to access multiple files.

4. The costs and complexities involved generally increase with the number of the decryption keys to be shared.

5. The encryption key and decryption key are different in public key encryption.

6. Identity based encryption instead attributes based encryption

In this paper, we study how to make a decryption key more powerful in the sense that it allows decryption of multiple cipher without increasing its texts. size. Specifically, our problem statement is "To design an efficient public-key encryption scheme which supports flexible delegation in the sense that any subset of the cipher texts (produced by the encryption scheme) is decryptable by a constant-size decryption key (generated by the owner of the mastersecret key)." We solve this problem by introducing a special type of public-key encryption which we call key-aggregate cryptosystem (KAC). In KAC, users encrypt a message not only under a public-key, but also under an identifier of cipher text called class. That means the cipher texts are further categorized into different classes. The key

owner holds a master-secret called mastersecret key, which can be used to extract secret keys for different classes. More importantly, the extracted key have can be an aggregate key which is as compact as a secret key for a single class, but aggregates the power of many such keys, i.e., the decryption power for any subset of ciphertext classes.

PROBLEM DEFINITION AND PROPOSED MODEL

3.1 Problem Statement

In current system present diverse inspiration for CSP to act faithlessly towards the cloud consumer; also, disagreement rarely experience be short of trust on CSP. as a result, behaviours may not be recognized by the cloud consumer, yet difference of opinion may outcome from the customers unacceptable operations. Thus, obligatory for CSP to put forward an competent audit facility to check the integrity and ease of use of the data.

3.2 Proposed Model

Proposed system overcomes the issues of existing system we bring in a lively inspection task for integrity proof of un-trusted users and storage spaces. New audit systems, which can support energetically, check the truthfulness of data.

SYSTEM REQUIREMENT

These are the following system software, hardware functional and non functional requirements

4.1 System Requirement

Specification

Table: 4.1 Summaries of SRS

Functional	Control the file access at cloud							
	server, Proxy Server							
	authenticates Users, Data,							
	Multiple key aggregations,							
	File Privacy Management,							
	Automatic Group Member							
	Revocation.							
Non- Functional	Data Owner never monitors							
	the Cloud activities							
External	LAN, WA <mark>N, Rou</mark> ters							
interface								
Performance	Finding File Hacker							
	Information, File Sharing							
	efficiency fairness between							
	Cloud Server and Remote							
	User, Revocation of the File							
	Hackers in the cloud							
Attributes	File Management, Public							
	auditing, Proxy Server, Cloud							
	Server, Data Owner, Remote							
	Users, Public Verifier, User							
	Revocation, User Un							
	Revocation							

4.2 Functional Requirements

- The proprietor or Group component uploads the files to cloud server machine.
- The Cloud server has to allow the suitable isolated users by verifying the Digital Signature. if the isolated users malicious then he has to revoke in the public verifier. The Hacker details will be registered by the cloud machine server. The cloud server will

generate the Shamir Secret Key to verify and authorize the end user.

- The Public Verifier has to uphold the fault localization (User revocation and un revocation) and has to keep an eye on the Cloud Server machine actions.
- The isolated user has to correct combined aggregated privet key and file name, Digital Signature. If anybody incorrect then he/she is observe as malicious user.
- File administration, Public auditing, Proxy Server, Cloud Server, Data proprietor, isolated Users, Public Verifier, client Revocation, Un Revocation client.

4.3 Non – Functional Requirements

The key non-functional requirements are:

- Security: The computer machine have to permit a protected communication among PS and CS, customer and File proprietor
- Energy effectiveness: The power consumed by the Users to obtain the File information from the CS machine
- Trustworthiness: Machine has to steadfast and must not mortify the act of the live machine and must not guide to the lynching of the machine.

USER INTERFACE

5. GUI Components

JButton, JLabel, JTextField, JTextArea, JFrame, JTabbedPane, JScrollPane, Container.

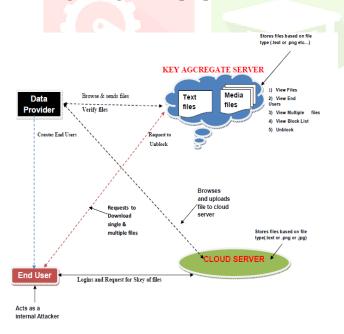
JButton: JButton is used to transmit, plain, hop add up, obtain data set

JLabel : It displays data small text string

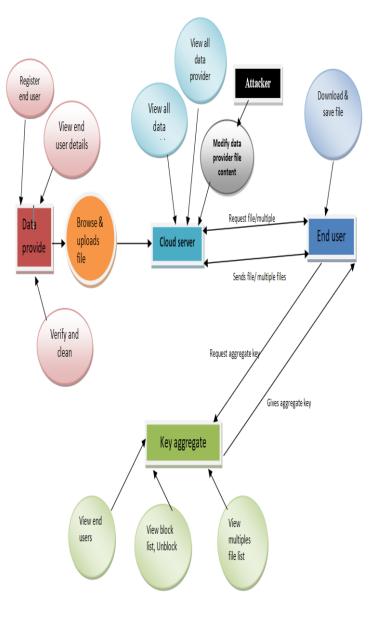
JTextField JTextField is element that allows the editing of a single line of text.

JTextArea JTextArea multi-line area that demonstrates plain text. In the development environment, it is used to transmit the data and to collect the data. The user enters the message to send the data.

JScrollPane

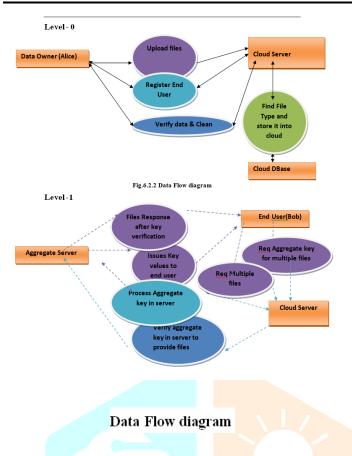

Provides a scrollable view of a light weight component. A JScrollPane manages a viewport, optional vertical and horizontal scroll bars, and optional row and column heading viewports.

JTabbedPane : This allows user exchange data between a group of elements by clicking on a tab.


Container : A generic Abstract Window Toolkit (AWT) container object and it is storage place where component include components.

6.ARCHITECTURE DIAGRAM

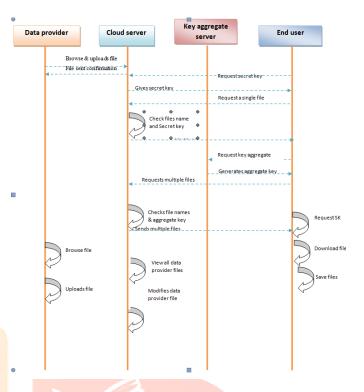
Fig. Design of the proposed model


the <u>visualization</u> of <u>data</u> processing (structured design). On a DFD, data items flow from an external data source or an internal data store to an internal data store or an external data sink, via an internal process DFD provides no information about the timing of processes, or about whether processes will operate in sequence or in parallel.

Data Flow diagram

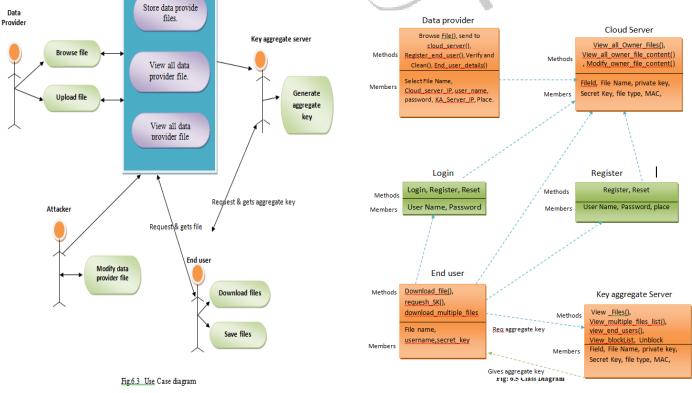
Data Flow Diagram:

A data-flow diagram (DFD) is a graphical representation of the "flow" of data through an <u>information system</u>. DFDs can also be used for


7. Use Case Diagram

It is graphical presentations of data owner, key aggregate server, cloud server, and end user, along with this their work, job.

Cloud server


8. Sequence Diagram

It is flow of data between data supplier, cloud server, key aggregate server and end consumer

8. Class Diagram:

A Class figure is a sort of relations figure that shows how classes interact data owner, cloud server machine, end user etc.

9. SYSTEM IMPLEMENTATION

Cloud Server

The cloud server supervises a cloud machine to offer data storage facility. Data proprietor encrypts the files and stores them in the cloud machine for sharing with consumers. To access the collective files, consumers download encrypted files which they want from the cloud and then CS will decrypt files. The cloud will generate the aggregate key if the end user requests multiple files at the same time to access.

Key Aggregate Server

The Key Aggregate Server is responsible to generate the master key for multiple files and this is responsible for permit access permission for multiple files.

Multiple files Key Aggregation

In this module gets a aggregate key for multiple files it can be text file or Multimedia (Video, Image) files this is been provided by the data provider to end-user master-secret key called Aggregate key.

• END User

In this part, the user is able to only right to use the data file by means of the encrypted key. Files it can be Text File or Multimedia File. The user can access the multiple files from Cloud Server via Key Aggregate Server using Aggregate Key. Therefore wicked malicious persons possibly will plan with dig up sensitive files by using un authorized key. 1. AES - File Encryption and decryption

2. SHA1 - Secured Hash Algorithm - for generating Digital Signature

3. Aggregate Key Generation algorithm - To generate an unique key for multiple file request4. RSA - To generate Public Key for accessing file

Data provider

The data supplier uploads records to the CS. For the safety reason the proprietor encrypts the file and then store in to the cloud. The proprietor be able to have competent of operate the encrypted data file. The proprietor set up the public system parameter via Setup and produces an aggregate key/master-secret key pair via Key Aggregate Server.

Modules:

- 1. Browse
- 2. Send To Cloud Server
- 3. Register End Users
- 4. Verify and Clean
- 5. End User Details

REGISTRATION OF END USER

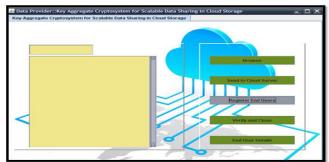


Fig 7.1.1: Registration of End Users

Name:	MALLAPPA					
Password:						
Confirm PW:						
place	Bangalore					
Submit	Reset					

REGISATRAION OF SUCCESSFUL

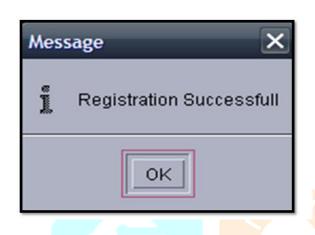



Fig 7.1.2: Registration of End Users

UPLOADING FILE TO THE SERVER

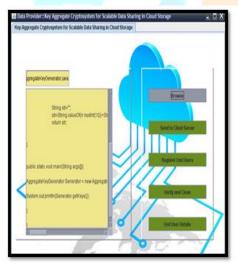
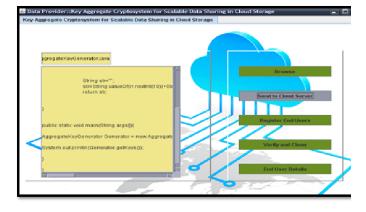



Fig 7.1.4 Uploading files to Cloud Server

TailappaliNorkspace29/ay Aggregate	Cryptosystem for Scalable Data Sharing in Cloud Storage	elar
Filter	Files	
Files	AES_Encryption_Decryption java	1
Folders	ApgrogateKeyGenerator Java	
	arroos pog	1
	anow.prg	
	ccloud.jpg	
	cloudmov pif	
	CloudServer java	
	cious2d.jpg	
	clouud jpg	
	CSBack.png	
	dataowner png	
	DataProvider Java	
	DBConjava	
	do ing	8
	East boy inco	2
Egder file name:		
AggregateKeyGenerator Java		

SEND DATA TO GHE CLOUD SERVER

Send Data to Cloud Server

Input	_		×
9	Enter the II localhost	PAddress	
)K		Cancel
🛃 Key Aggregate File	Server::Key Aggregate Cryptos	ystem for Scalable Data Sharing in Clo	ud Storage 🔹 🖸 🔰
	100	WORK STORAGE	
) <u>}</u>	

Data is Uploading to Cloud Server

Bob

Alice

www.ijcrt.org

ate

10. TESTING AND RESULTS

10.	TESTI	NG AP	ND RES	ULIS			ate				
							Server				
Te	Test	Innut	Output	Evenanta	Stat						
		Input	Output	Expecte	Stat	5	Data	Key	Details	Details	PAS
st L	Name			d Dogult	us		Provide	Aggre	of End	of End	S
Id				Result			r	gate	User	User	
1		D	D	D	DAG		viewin	server			
1	Data	Remot	Registra	Registra	PAS		g end	IP			
	Provide	e User	tion	tion	S		user	addres			
	r	Details	Success	Success			details	S			
	creates			and			Data	Wrong	Details	Details	FAI
	Remote			details			Provide	IP	of End	of End	L
	user			stored in			r	addres	User not	User	
				Key			viewin	s of	availabl	0.501	
				Agg			g end	Key	e		
				Server			user	Aggre			
2	Data	file	Data	Data	PAS		details	gate			
	Provide		stored	stored in	S			Server			
	r			encrypte		6	Data	File	File is	File is	PAS
	browsi			d form		Ŭ	Provide	name	safe	safe	S
	ng the						r verify	and	Suit	Bure	5
	data						and	server			
	Data	data	Data i <mark>s</mark>	Display	FAI		clean	IP			
	Provide	e e	not	Data	L		file	addres			
	r		Present				1110	S			
	browsi	•	in				Data	Wrong	File not	File is	FAI
	ng data		director	P.			Provide	file	Found	safe	L
	-	~	У	_		_	r verify	name			
3	Data	Server	Data	Data	PAS		and	and IP			
	Provide	IP	stored in	stored in	S		clean	addres			
	r	addres	server	server in			file	S	(a)		
	adding	S		encrypte		7	Attacke	Some	File	File	PAS
	data			d form	\sim		T	extra	modifie	modifie	S
	into						modifie	code	d alert	d alert	
	server		E .	P	E 4 F	-	s file in		to	to	
	Data	Invalid	Data	Data	FAI		server		Attacker	Attacker	
	Provide	server	cannot	stored in	L		Attacke	wrong	File not	File	FAI
	r	IP	stored in	server			r	server	modifie	modifie	L
	adding	addres	server				modifie	IP	d in	d alert	
	data to	S					s file in	addres	server	to	
4	server	IZ.			DAG		server	S		Attacker	
4	Data	Key	Data	Metadat	PAS		Attacke	wrong	File not	File	FAI
	Provide	Aggre	stored in	a stored	S		r	server	modifie	modifie	L
	r	gate	key	in Key			modifie	IP	d in	d alert	
	adding	Server	Aggrega	Aggrega			s file in	addres	server	to	
	data to	IP Address	te Samuan	te Somvon			server	S		Attacker	
	KAS	Addres	Server	Server		8	End	Enter	Login	Login	PAS
	D-4	S	Det	Mc+- 1 +	EAT		User	Valid	successf	Success	S
	Data Provide	Invalid	Data	Metadat	FAI		logging	user	ul	and End	
	Provide	KAS	cannot	a stored	L		in	name		User	
	r Adding	IP	stored in	in Key				and		Module	
	Adding data to	addres	KAS	Aggrega				Passw		got	
	data to	S		te Sorvor				ord		activate	
	Key			Server						d	
	Aggreg							-	·		

© 2017 IJCRT | Volume 5, Issue 2 May 2017 | ISSN: 2320-2882

	End	Enter	Login	Login	FAI			ate			
	User	invalid	Failure	Success	L			key			
	logging	details		and End			Receivi	Wrong			
	in			User			ng	File	File not	File	FAI
				Module			Multipl	name	received	received	L
				got			e files	or			
				activate				aggreg			
				d				ate			
9	End	File	Request	End	PAS			Key			
-	User	name	ed	User get	S	13	Cloud		Get	Get	PAS
	requesti		Secrete	Request	~		Server		owner	owner	S
	ng		Key	ed Skey			viewin		file	file	~
	Skey		5	5			g all		details	details	
	End	Wrong	End	End	FAI		owner				
	User	File	User not	User get	L		files				
	requesti	name	get Skey	Request			Cloud		Cannot	Get	FAI
	ng		0,00	ed Skey			Server		get	owner	L
	Skey			5			viewin		owner	file	
10	Receivi	File	Receive	File	PAS		g all		file	details	
	ng file	Name	d file	received	S		owner		details		
	8	and			~		files				
		Secret		. 1		14	Cloud	File	Get	Content	PAS
		key					Server	name	content	received	S
	Receivi	Wrong	Becom	File	FAI		viewin		of file	10001/00	~
	ng file	File	es	received	L		g				
		name	attacker				owner	1			
		or					file	22			
		Secret					content				
		key					Cloud	Wrong	Will not	Content	FAI
11	Reques	No of	End	End	PAS		Server	file	get	received	L
	ting	files,	user get	User	S		viewin	name	content		
	Aggreg	File	Aggrega	will get			g		of file		
	ate Key	name	te Key	Aggrega			owner		C_{1}		
		and		te Key			file	$\sim N$			
		Key				\sim	content	10			
		Aggre					Cloud	Some	File	File	PAS
		gate				15	Server	Extra	modifie	Modifie	S
		Server					Modify	content	d alert	d alert	
		IP					ing file	&	to cloud	to server	
		Addres					-	server	server		
		S						IP			
	Reques	No of	End	End	FAI			addres			
	ting	files,	User not	User	L			S			
	Aggreg	wrong	get	will get			Cloud	Wrong	File will	File	FAI
	ate Key	file	Aggrega	Aggrega			Server	server	not	Modifie	L
	•	name	te Key	te Key			Modify	IP	modifie	d alert	
		or		-			ing file	addres	d	to server	
		KAS					-	S			
		IP									
		addres									
		S									
12	Receivi	Files	Receive	File	PAS						
	ng	Name	d file	received	S						
	Multipl	and									
	e files	aggreg									
		Ŭ									

CONCLUSION AND FUTURE SCOPE

The Proposed system achieves the integrity of the users in cloud storage spaces at data owner side, this has been achieved with more numerical, cryptographic methods, which are reaching more flexible and habitually engage multiple keys for a application. We think over how single to "compress" secret keys in public-key cryptosystems which giving out of secret keys for dissimilar cipher text classes in cloud storage. No matter which one among the power set of classes, the delegate can always get an aggregate key of steady size. Our approach is more flexible than hierarchical key assignment which can only save spaces if all keyholders share a similar set of privileges.

Future Scope is that while downloading file or data alert message has been generated immediately to the Remote User if the file or data got tempered or modified. Another limitation in our work is the predefined bound of the number of maximum cipher text classes in cloud storage, the number of cipher texts usually grows rapidly. So we have to reserve enough cipher text classes for the future expansion. Otherwise, we need to expand the public-key as we described in this system

REFERENCES

[1] Dan Boneh, Xavier Boyen, eu-jin goh"Hierarchical identity based encryption with constant size ciphertext" by RYPT 2005, volume 3493 of Lecture Notes in Computer Science,

[2] Mate Horavath Attribute-Based EncryptionOptimized for Cloud Computing LNCS 8939, pp.566{577 cSpringer-Verlag Berlin Heidelberg 2015.

[3] Giuseppe Ateniese, Kevin Fu,Improved Proxy Re-Encr Secure Distributed Storage ACM Transactions on Informati Issue 1, February 2006

[4] Tatsuaki Okamoto Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption Katsuyuki Takashima Mitsubishi Electric Vol 2536 july 11, 2012

[5] Boyang Wang,Sheremn M chow Storing shared data on the cloud via security-mediator ICDCS '13 Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems Pages 124-133

[6] Jin LiA Hybrid Cloud Approach for Secure Authorized Deduplication Published in:<u>Parallel</u> and Distributed Systems, IEEE Transactions on (Volume:26, <u>Issue: 5</u>)

 [7] Patric P c A cloud enviroment for backup and data storage Published in: <u>Electronics</u>, <u>Communications and Computers</u> (<u>CONIELECOMP</u>), 2014 International Conference <u>on</u>

[8] <u>Cheng-Kang Chu</u> Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage <u>Parallel and Distributed Systems, IEEE</u> <u>Transactions on</u> (Volume:25, <u>Issue: 2</u>)