
www.ijcrt.org                                                     © 2016 IJCRT | Volume 4, Issue 1 January 2016 | ISSN: 2320-2882 

IJCRT1134663 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 538 
 

Modelling Soil Behaviour in Uniaxial Strain 

Conditions By Neural Networks 
 

Yeruva Ramana Reddy 

Sr. Geotechnical Engineer & Department of Civil Engineering 

Indian Institute of Technology, India 

 
Abstract— The main aim of this research is to examine how 

neural networks can describe soil behavior under situations of 

uniaxial tension. Geotechnical engineering issues have been 

effectively modelled using artificial neural networks (ANNs) 

over the past several years. Artificial neural networks (ANNs) 

are a kind of artificial intelligence (AI) that aim to replicate the 

brain and nervous system of humans [1]. Most geotechnical 

engineering issues may be effectively modelled with ANNs. The 

goal of this work was to use ANNs to figure out how much dirt 

is buried under the surface. Depending on the size of the 

research area, it may be necessary to conduct a number of 

experiments and drill a number of boreholes in order to 

evaluate the soil layer structure [1]. The near-surface geology 

may be better understood by learning more about the qualities 

of the soil layers between boreholes. A neural network (ANN) 

learns from instances of data in order to grasp the nuances of 

functional data correlations even when the underpinnings of 

such interactions are obscure or difficult to understand on the 

physical level. 
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I. INTRODUCTION 

The ability to accurately forecast the behavior of 

geotechnical constructions relies on the use of appropriate soil 

models. In the past three decades [1], a vast variety of models 

based on diverse constitutive theories have been presented. All 

of them presuppose an a priori mathematical model framework 

and need physical material testing to identify the material 

properties that match to the expected framework. A great deal 

of the information in complicated constitutive theories is based 

on numerical simulations, which can only be determined 

through trial and error. As a result, it is difficult to represent all 

aspects of soil behavior, including stiffness at small stresses, 

increased stiffness on reversing stress paths, and the impact on 

stress axes' rotations. Despite decades of study into soil's 

mechanical characteristics, very little is understood about how 

soil behaves. Simplified hypotheses are used to address 

multivariable geotechnical issues using conventional 

approaches such as mathematical and experimental methods. A 

closer look at these techniques reveals that they are unable to 

capture the intricate behavior of soil [2]. It is vital to use a 

replacement approach in which effective parameters are 

considered concurrently, as well as the capacity to generalize 

and learn directly from experimental Fidata (by considering 

errors). Many geotechnical engineering challenges have been 

successfully solved using neural networks in recent years. As a 

result of the usefulness of neural networks in resolving 

complicated issues, neural network research has continued. 

Various boreholes must be bored and many tests conducted in 

order to determine the structure of the soil. This procedure is 

very costly and time-consuming [3]. 

As the accuracy of interpolating soil layer structures and 

qualities in between boreholes (i.e. distances between boreholes) 

increases, so does the cost of geotechnical assessments, making 

it easier to plan out building projects properly [4]. Human brain 

characteristics such as learning, data generalization, managing 

missing data and parallel computation were not accessible in 

earlier systems [5]. ANN (as an intelligent system) exploits 

these skills. Geotechnical engineering is a popular application 

of artificial neural networks (ANNs), and many academics have 

looked at it. On the basis of cone penetration test results, an 

artificial neural network model can accurately anticipate 

complicated soil. In this article, neural networks are used to 

describe soil behavior under circumstances of uniaxial strain. 

 
Fig i: An example of a uniaxial strain 

II. RESEARCH PROBLEM 

The main problem that will be solved by this paper is to 

analyze how neural networks can be used to model soil 

behaviour in uniaxial strain conditions. Complex nonlinear 

interactions between input and output data sets may be 

identified by using ANNs, which are adaptable mathematical 

frameworks. It is possible to generalize ANN models [6]. The 

non-linear and complex interactions among variables in a 

system may be captured using ANN models, which can deal 

with poor or partial data. The ANN model has a lot of promise 

in geotechnical engineering because of its unique learning, 

training, and prediction capabilities. Many geotechnical 

engineering challenges have recently been solved using 

artificial neural networks (ANNs). 
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III. LITERATURE REVIEW 

A. Artificial neural networks 

Computerized technologies that resemble organic nerve 

systems have become more popular in recent years. "Artificial 

neural networks" are tools found in almost every discipline of 

engineering research, and their application is steadily rising. 

Since the late 1980s, they have been used in civil engineering 

[7]. Process optimization, the computed value corresponding to 

the vehicle axis load, performance and manufacturing process 

modeling, seismic risk prediction and cost estimation are just a 

few of the many applications now available. One of the most 

important reasons neural networks are becoming more popular 

is that they can take full advantage of brain-based information 

processing properties not accessible through conventional 

programming techniques, such as learning and generalizing 

abilities, the ability to suggest solutions to problems where the 

input contains errors, and finally, the ability to calculate related 

time responses for problems that have complex causes.

 
Fig i: An illustration of Artificial Neural Network 

Adjusting weights between nodes in a neural network is 

done to correct for differences between actual output values and 

the desired output values. Numerous rules for learning have 

been devised. The most often used learning rule is back 

propagation [9,10]. Pattern and function approximation are two 

areas in which the back-propagation learning rule is most often 

used. A network's mean-squared error may be reduced by 

adjusting the weights and biases of the network. In order to do 

this, the weights and biases in the network must be adjusted in 

the direction of the steepest error drop. Back-propagation 

across each hidden layer is used to produce error vector 

derivatives for the network's output layer [11]. The term 

"training" refers to the process of continually feeding the 

network input vectors, calculating the errors based on the goal 

vectors, and then using the learning procedure to identify new 

weights and biases. After a certain number of epochs or a 

minimum mean-squared error has been reached, the cycle is 

repeated. A neural network model that can predict a target value 

for a given input value is presented at the conclusion of this 

training phase. 

B. Modeling input and output parameters using neuronal 

networks 

Based on the MATLAB toolbox, an ANN program is 

employed in this study (MATLAB). To train the ANN, the 

authors required a collection of input and output pairings that 

were already known to them. There are normally two sets of 

input-output pairs available for use. The weights of the 

connections in the networks are determined using the learning 

or training set. After training, the neural network's performance 

is assessed using the testing set [12]. Because of the limited 

amount of data, it was decided to rely on information from the 

soil layers for the categorization process. Input parameters 

included the x, y, and z coordinates and depth. The output of 

the ANN model was a related category based on the input 

parameters, which will be explained in the next paragraph. The 

grain size of soil samples determines the type of soil in the 

Unified Soil Classification System (USCS). A total of eleven 

soil categories were identified in the research region. Symbols 

might be assigned to certain groups in this manner. It was found 

that in this study, 75 percent of the data was utilized in training 

and 25 percent in testing [13]. 

Algorithms with a single hidden layer are used to get the 

RMSE values. Networks that have consistent features were 

used to establish the optimal number of neurons in the hidden 

layer; subsequently, a variety of parameters were changed and 

various values were assigned to neurons so that the findings 

were compared to find the optimal number of neurons. In order 

to arrive at an accurate estimate of the number of neurons, we 

used the RMSE method, which has already been explained. 

Two, three, four, five, six, seven, eight, nine, and ten neurons 

are learned in hidden layers of back-propagation neural 

networks. Different neurons' RMSE readings are displayed. 

Seven neurons in a network with a momentum of 0.2, a learning 

rate of 0.33, and an epoch of 500[12] had the lowest RMSE [13]. 

A model with a reduced root-mean-square error (RMSE) was 

chosen for the aforementioned situation. 

C. Models of Constitutive Behaviour Based on Artificial 

Neural Networks (ANN) 

When a collection of "causes" and "effects" are identified, 

ANNs may be used to identify the link between them. It's 

possible to find a pattern in just about any collection of 

numerical data [12]. In the last two decades, this technique has 

been used by a slew of scientists throughout the physical and 

biological sciences. There is a lot of emphasis here on 

generating nonlinear stress-strain relations for geomaterials. 

With the right data, artificial neural networks (ANNs) may be 

utilized to model the stress-strain response of any material. 

When it comes to strain rate components, the resultant stress 

rates serve as both the source and the impact. The tangential 

stress integration matrix does not need to be updated or 

reconstituted in order for a NNCM to accurately describe stress-

strain behavior. In [13], you'll find all the information. For the 

sake of completeness and coherence, a succinct explanation is 

provided below. From the associated incremental strain vector, 

an incremental stress (as opposed to total) vector may be 

derived. 

D. Hardening Soil Model (HSM) 

It is a nonlinear elastic-plastic model with a Mohr Coulomb 

failure criterion, as detailed in PLAXISTM Manual's 

Hardening Soil Model. An improved version of Duncan & 

Chang's nonlinear elastic hyperbolic model is presented in [13], 

where deviatoric hardening is applied to the Mohr Coulomb 

yield surface. Non-associated flow rules are established, which 

are determined by a dilatancy angle lower than the peak 

frictional angle. It may be applied to lose to medium-density 

sands and soils that are ordinarily cemented to mildly over-

consolidated. Nonlinearity before failure is a shortcoming of 

linear elastic-plastic models, which this approach addresses. 

Cap on deviatoric stress – mean effective stress space is also 

included in the package. For the sake of comparison, we've used 

the normal medium dense parameters [13] as a starting point. 

The PLAXISTM software instructions should be consulted for 

a complete list of parameters, even though some of them are 

recognizable to engineers. Stress and strain responses of the 

sand under different experimental settings, such as Triaxial 
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Loading In Compression (LC) and Extension (LE) [13], are 

derived from the data in Table 1 [14,15]. These results were 

obtained by the use of stress drains that have been carefully 

monitored and managed. The PLAXISTM program with HSM 

model was used to analyze a single finite element exposed to 

uniform stress conditions [13]. q and p' are the deviatoric and 

effective mean stress routes in space, respectively. Three 

distinct confining pressures of 50 kPa, 100 kPa and 150 kPa are 

employed for each of the aforementioned stress paths [14]. 

These simulations yielded stress-strain data that was utilized to 

train the NNCM. 

IV. SIGNIFICANCE TO THE U.S 

When it comes to engineering and construction projects in 

the United States, finite element analysis (FEA) is one of the 

most important building components. In Geotechnical 

Engineering, one of the most important goals of study has been 

to develop realistic stress-strain behavior models. Using Neural 

Networks, a more data-driven method may be devised to 

account for this problem. Soil behavior may be modelled using 

neural networks. The modeling of soil stress-strain behavior 

focuses mostly on the Neural Network approaches that might 

be beneficial in construction [14,15]. The stress-strain 

connection is precisely predicted by the Neural Network. Even 

"noisy" datasets may be utilized to forecast the stress route. If 

you train neural networks on a training dataset including noise, 

however, they can recognize patterns in that noise. Ultimately, 

this is an endeavor to construct a neural network modeling 

approach with the goal of creating data-driven modeling 

techniques. ' It is critical for project owners, contractors, and 

designers to be able to determine the most important criteria for 

a successful project performance. A well-executed construction 

project may benefit from an understanding of these critical 

elements. 

V. FUTURE IN THE U.S. 

According to a recent report, data collection efficiency and 

standardization may become more of a focus in U.S. neural 

model research in the next years. It is becoming clear that 

artificial neural networks (ANNs) may be used to build 

structures. When it comes to the design of a dry precast concrete 

connection, ANNs are often used. An automated data gathering 

system should be implemented to guarantee long-term data 

quality and sustainable data updates. As a result, in many 

geotechnical and civil engineering businesses, it would serve as 

an effective management platform for US building projects. For 

a considerable amount of time, the branch of study that has 

shown the greatest promise has been neural network modeling. 

They've just stepped up their pace. It was only possible to use 

one hidden layer in the early days of neural networks yet the 

results were still far better [18]. Because of their established 

effectiveness in handling complicated geotechnical issues, 

neural networks approaches are becoming more essential. 

Small and medium-sized businesses (SMEs) as well as 

individuals are increasingly able to take use of open-source 

software and high-performance computer capabilities. 

 

VI. CONCLUSION 

This research offers recommendations for neural network 

modeling of soil behaviour under uniaxial strain situations. 

Using an artificial neural network, this research accurately 

predicts soil stiffness under circumstances of uniaxial strain, 

confirming the relationship between fundamental soil 

parameters and stress-strain soil behaviour. The comparison of 

neural network predictions with empirical equations 

demonstrates that the neural network provides a more accurate 

and broad solution to the issue. A effective forecast of 

engineering structures' behaviour can only be made with the use 

of accurate material models, according to the research. In the 

past three decades, a vast variety of models for geomaterials 

based on diverse constitutive theories have been published, 

showing a substantial variance in their characteristics. 

Mathematical frameworks and material characteristics must be 

determined via physical experiments in order to use any of these 

models. A great deal of the information in complicated 

constitutive theories is based on numerical simulations, which 

can only be determined through trial and error. A single model 

has failed to represent the multiple aspects of soil behaviour, 

such as stiffness at small stresses and increased stiffness on the 

reversal stress path, as well as the impact of rotation of the 

primary stress axes. Models with more complexity are 

envisaged in the future. 
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