
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 260

A CRITICAL ANALYSIS OF INTEGRATION

OF NON-FUNCTIONAL REQUIREMENTS

INTO DESIGN PATTERNS FOR SAFETY-

CRITICAL COMPUTER SYSTEMS
Dr.Gandi Satyanarayana1

Professor, Department of Computer Science & Engineering, Avanthi Institute of Engineering and

Technology

Makavarapalem, Visakhapatnam, Andhra Pradesh, India

 Dr Kadupukotla Satish kumar2

Associate Professor

Department of Information Technology

St Peters Engineering College, Hyderabad-500010, India

Abstract

Resilient Design Patterns is of considered opinion of

the experts in the field of software engineering for

safety. Thus the need for robust design Patterns

towards concise and compact solutions for

compromising safety aspects of design issues both in

software and hardware designs. Therefore it is

necessary to account for functional and non-functional

requirements in the design patterns of safety-critical

computer systems.

This work focuses on integration of non-functional

requirements & implications to the prevailing design

pattern concept. In order, this paper proposes a new

pattern for safety-critical computer application through

rigorous study of design methods by including fields for

the implications, complications and unforeseen

peripheral issues of the traditional design patterns based

on non-functional requirements of the entire systems.

The paper also considers requirements including

designs for safety, reliability, modifiability, cost, and

execution time. The overall study indicated and

showed improved results that the proposed new design

pattern can be of better use in safety-critical computer

systems.

Keywords: Design Pattern, Embedded Systems,

Non-Functional Requirements, Safety-Critical

Computer Systems

Notations:

RAC: The reliability of the actuation channel.

(Rold= RAC)

RSC: The reliability of the fail-safe processing channel.

RSE: The reliability of the

 safety executive component.

C: The coverage factor which is defined as: the

probability that a fault in an actuation channel will

be identified by the safety executive and the fail-

safe processing channel will be activated.

Rnew = The reliability after using this patteren

Rold = The reliability of the basic system

I. INTRODUCTION

Design pattern, originally proposed in (Acharyulu,

2015) by the architect Christopher Alexander, is a

universal approach to describe common solutions to

widely recurring design problems. Ever since, this

concept has been applied in several domains of

hardware design (electronics) and also became popular

in the software domain after the success of the book

Design Patterns: Element of Reusable object oriented

Software by Gama et al. [2].

As the concept of design pattern aims at supporting

designers and system architects in their choice of

suitable solutions for commonly recurring design

problems, this concept might also be useful to support

the design of safety-critical embedded systems. The

design of these systems is considered to be a complex

process, as hard- ware and software components have

to be considered during the design as well as potential

interactions between hardware and/or software

components. Moreover, not only functional

requirements1 have to be fulfilled by these systems.

Failures in safety-critical systems could result in critical

situations that may lead to serious injury or loss of life

or unacceptable damage to the environment. Therefore,

also the non-functional requirement safety has to be

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 261

considered in these systems to assure that the risk of

hazards is acceptable low in the considered system. To

support the design of safe devices, safety measures are

given by international safety standards as the IEC61508

[3]. Beside life cycle and process requirements, also

different measures for the design of software and

hardware components are recommended. These safety

measures have typically an impact on the cost, the

reliability, the real time behavior of the system, and on

the modifiability of the resulting system. Depending on

the application domain of the later embedded system,

these non-functional requirements are of great

importance. For this reason, nonfunctional

requirements should be considered during the design of

any safety-critical system.

While current concepts of design pattern exist for

many different application domains, they typically lack

a consideration of potential side effects on

nonfunctional requirements. In order to integrate these

side effects into the pattern concept, we propose an

extended template for an effective design pattern

representation for safety-critical applications.

This pattern representation includes the traditional

pattern concept in combination with an extension

describing the implications and side effects with respect

to the non-functional requirements. While this concept

has been described briefly in [4] before, this work

focuses on the application of our approach. Thus, two

example patterns are included to illustrate the proposed

representation of design patterns for software and

hardware components in safety-critical applications.

Section II discusses about the related work in

discipline, Section III describes about the outline of

Design Patterns, Section IV details various implications

of non-functional requirements while integrating into

design patterns, Section V illustrates about some of the

example patterns, Section VI deals with the integration

with implications in integration of non-functional

requirements into design patterns, and concluding

remarks are given in Section VII

 II. RELATED WORK

The field of design pattern is large and still rapidly

growing. Many researchers have focused on the use of

design pattern in the software domain, but further

research is still needed in the domain of safety-critical

systems to integrate the non-functional requirements in

design patterns. In his books [10] and [11], Bruce

Douglass proposed several design patterns for safety-

critical systems based on well known fault tolerant

design methods and by integrating some modification

to increase the safety level on these patterns. Gross and

Yu [12] discuss the relationship between non-

functional requirements and design patterns, and

propose a systematic approach for evaluating design

patterns with respect to nonfunctional requirements.

They propose the use of design patterns for

establishing traces between non-functional goals in a

goal tree such as a soft goal interdependency graph

(SIG) and the system design. Cleland-Huang et al.

enhance the patterns defined by Gross and Yu [12]

through defining a model for establishing traceability

between certain types of non-functional requirements

and design and code artifacts, through the use of design

patterns as intermediary objects. Xu [15] classified the

dependability needs into three types of requirements

and proposed an architectural pattern that allows

requirements engineers and architects to map

dependability requirements into three corresponding

types of architectural components. Konord [16, 17]

describe a research of how the principle of design

pattern can be applied to requirements specifications,

which they term requirements patterns for embedded

systems. They include a constraints field in the pattern

template to show the functional and non-functional

restrictions that are applied to the system.

In comparison to our work, none of the

aforementioned approaches show clearly the

implications on the non-functional requirements as part

of the pattern. These patterns and the other

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 262

developed patterns focus on the traditional structure of the

pattern that includes: context, problem and solution. The use

of non-functional requirements in these approaches is

restricted to the requirement analysis phase of the design

process. In these approaches, neither a relative measure nor

an indication for the implications of the patterns on the non-

functional requirements, were given. To improve these

approaches, we propose a new template representation in

Section 4 to show the implications of the represented

patterns on the non-functional requirements.

III. DESIGN PATTERN OUTLINE

In this section, the template pattern we propose for the

representation of design patterns for safety critical

embedded applications is described. As depicted in Figure

1, the upper part of the template includes the traditional

representation of a design pattern while a listing of the

pattern implications on the non-functional requirements is

given in the Implication section. Moreover, further support

is given by stating implementation issues, summarizing the

consequences and side effects as well as a listing of related

patterns.

Figure-1. The design pattern outline

The proposed design outline includes a part for

pattern implications on the non-functional

requirements reliability, safety, cost, modifiability and

execution time. To allow a suitable description of

these implications, the changes/improvements of

using the corresponding design pattern are represented

relative to a basic simple system (Figure 2). This basic

system has a given reliability (Rold), a given cost, a

given modifiability and is resulting in a given

executing time. Moreover, this basic system has no

specific safety measurements.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 263

IV. THE IMPLICATION ON NON-

FUNCTIONAL

REQUIREMENTS

While the main part of the design pattern

proposed does not differ from well known approaches

[18, 19, 20, 21], the part for the implications on the

non-functional requirements is described in this

section. As mentioned above, the implications are

stated relative to the basic system without any specific

safety method. In the following, the determination of

the five implications on nonfunctional requirements is

described:

Reliability: In this context, reliability is defined as the

probability that of a system or component to perform

its required functions correctly under stated

conditions for a specified period of time. This part of

implications describes the relative improvement in the

system’s reliability relative to the maximum possible

improvement in reliability, which is defined in the

following equation:

Safety: The safety of a system is usually determined by

the residual risk of operating this system (see e.g.

[3]).Therefore; the notion of risk can be used as a

measure for the assessment of safety-critical systems.

The problem concerning design patterns is that they

describe an abstract solution to a commonly recurring

design problem. As it is not related to a specific

application or to a specific case, it is difficult to

determine an actual value for the possible residual risk

without considering a concrete application. To allow an

indication of the safety that can be achieved by the

application of a specific design pattern, existing

recommendations given in safety standards are used.

 In detail, it is stated to which Safety Integrity Level

(SIL) the pattern is recommended in a given safety

standard. The safety integrity levels used here include

the levels SIL1 to SIL4 as they are defined in the

standard IEC61508 [3]. Additionally, the notation SIL0

is used in this template to describe a system without

specific safety requirements. If measures are described

in design patterns that are not included in current safety

standards, these measures have to be assessed in an

appropriate manner, e.g. by comparing them to

measures with known recommendations.

Cost: The implications on costs include: The recurring

cost per unit, which reflects the additional costs

resulting from additional or specific hardware

components required by the design pattern and the

development cost of applying this pattern.

Modifiability: This implication describes the degree to

which the system developed according to this design

pat- tern can be modified and changed.

Impact on execution time: With this implication, the

effect of the pattern on the total time of execution at

run- time is indicated. It shows the execution time

overhead that is resulting from the application of this

pattern in the worst and the average cases.

The application of the design pattern proposed,

especially the use of the implication part introduced

briefly in this section, is described in form of two

example patterns in the following section.

 V. EXAMPLE PATTERNS

Two example patterns are presented in this section

to illustrate the application of the proposed approach:

The first pattern is a hardware and software pattern that

is expected to be suitable for complex and highly

safety-critical systems. The second pattern is a hybrid

software fault tolerance method intended to increase the

reliability of the standard N-version programming

approach (Acceptance Voting Pattern).

1. Example 1

In this example pattern, the pattern originally

described in [10] is presented in our extended pattern

representation including also implications on

nonfunctional requirements.

Pattern Name

Safety Executive Pattern (SEP)

Other Names

Safety Kernel Pattern

Type

Hardware and Software

Abstract

The Safety Executive Pattern can be considered

as an extension of the Watchdog Pattern4 targeting the

problem that a shutdown of the system by the actuation

channel itself might be critical in the presence of faults

(shutdown might fail or take too long). This problem

occurs especially in those systems in which a

complicated series of steps involving several

components is necessary to reach a fail-safe state.

Therefore, the Safety Executive Pattern uses a

watchdog in combination with an additional safety

executive component, which is responsible for the shut-

down of the system as soon as the watchdog sends a

shut down, signal (see also Figure 3. the safety

executive pattern). If the system has a safe state, the

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 264

actuation channel is shutdown via the safety executive

component. Otherwise, the safety executive component

has to dele- gate all actuations necessary to an

additional fail-safe processing channel.

Context:

The application of this pattern is suitable in the

following context:

 The considered actuation channel requires a risk

reduction by safety measures.

 The considered system has at least one safe state. If

this is not the case, an additional fail-safe processing

channel has to be applied to overtake necessary

actions.

 A shutdown of the actuation channel is complex. As

an example, this is the case if several safetyrelated

system actions have to be controlled

simultaneously.

 A sufficient determination of failures in the

actuation channel can be achieved by a watchdog.

Problem

Provision of a centralized and consistent

method for monitoring and controlling the execution of

a complex safety measure (shutdown or switch over to

redundant unit in case of failures).

Pattern Structure

The Safety Executive Pattern is based on an

actuation channel to perform the required functionality

and an optional fail-safe processing channel that is

dedicated to the execution and control of the fail-safe

processing (see also Figure 3). The central part of this

pattern is the existence of a centralized safety executive

component coordinating all safety-measures required to

shut down the system or to switch over to the fail-safe

processing channel. The safety executive component

can also be used to control multiple actuation channels

in the system that each may have multiple channels.

The components of the pattern depicted in Figure 3 are

described below:

• Input Data Source: This component

represents the source of information that is used as

input to the system under consideration. Typically, this

data comes either from the system user or from external

sensors that are used to monitor environmental

variables such as: temperature, pressure, speed, light,

etc...

• Actuator(s): Actuators are the physical

devices that perform the action of the channel like:

motors, switches, heaters, signals, or any other device

that performs a specific action. Often, there are more

than one actuator in a single channel.

• Actuation Channel: This channel represents a

sub- system that performs dedicated tasks in the overall

system by taking an input data from the input data

source, per- forms some transformation on this data,

and then uses the results to generate suitable commands

to drive the actuators.

• Fail-Safe Processing Channel: This is an

optional channel; it is dedicated to the execution and

control of the fail-safe processing. In the presence of a

fault in the actuation channel, the safety executive turns

off the actuation channel, and the fail-safe channel

takes over. If the System doesn’t have a fail-Safe

Channel, then the actuation channels must have at least

one reachable safe state.

• Data Acquisition (Input Processing): This

part of the channel collects the raw data from the input

data source and may perform some data formatting or

transformations.

• Data Processing (Transformation): This part

may contain multiple data transformation components;

where each one performs a single transformation or

processing on the received data to execute the desired

algorithm in order to generate the required control

signals. The final component of this part sends the

computed output to the output processing unit.

• Output Processing: This unit takes the

computed data from the data transformation unit and

generates the final data and the control signals to drive

the actuators. It can be considered as a device driver for

the actuator.

• Integrity Check: This is an optional

component that is invoked by the watchdog to run a

periodic Built-In Test (BIT) to verify all or a portion of

the internal functionality of the actuation channel.

• Time Base: This is an independent timing

source (timing circuit) that is used to drive the

watchdog. This time source has to be separate from the

one used to drive the actuation channel.

• Watchdog (WD): The watchdog receives

liveness messages (strokes) from the components of the

actuation channel in a predefined timeframe. If a stroke

comes too late or out of sequence, the watchdog

considers this situation as a fault in the actuation

channel and it issues a shutdown signal to the actuation

channel or initiates a corrective action through sending

a command signal to the optional integrity check. If the

system contains multiple actuation channels, then it

may contain multiple watchdogs, one per actuation

channel.

• Safety Executive: This is the main component

in this safety executive pattern. It tracks and

coordinates all safety monitoring to ensure the

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 265

execution of safety action when appropriate. It consists

of a safety coordinator that controls safety measures

and safety policies. The safety executive component

captures the shutdown signal from the watchdog in the

case of failure in the actuation channel.

• Safety Coordinator: The safety coordinator is

used to control and coordinate the safety processing

that is managed by the safety measures. It also executes

the control algorithms that are specified by the safety

policies.

• Safety Measures: Include the detailed

description of the safety measures. The safety

coordinator may control multiple safety measures.

• Safety Policies: Each safety policy specifies a

strategy or control algorithm for the safety coordinator.

It involves a complicated sequence of steps that involve

multiple safety measures. The reason for the separation

of the coordinator from the safety policies is to make

the process of changing and adapting a safety policy

easier.

Implication

 This section describes the implication of this pattern

relative to the basic system without a specific safety

method.

Reliability

Let us have the following notations:

RAC: The reliability of the actuation channel. (Rold =

RAC)

RSC: The reliability of the fail-safe processing channel.

RSE: The reliability of the

 safety executive component.

C: The coverage factor which is defined as: the

probability that a fault in an actuation channel will be

identified by the safety executive and the fail-safe

processing channel will be activated.

Assume that the watchdogs are carefully

designed with reliability=1.

The safety executive pattern will continue to work

without system failure as long as one of the following

two conditions holds:

• There is no fault in the actuation channel.

• There is a fault in the actuation channel and the

watchdog detects this fault and the safety executive

initiates a shutdown or activates the fail-safe

processing channel.

The new reliability after using this pattern (Rnew) is

equal to:

In this equation, the first term represents the

reliability of the actuation channel while the second

term represents the reliability of the remaining parts in

the case of failure in the actuation channel.

Figure-3. The Safety Executive pattern

The percentage improvement in reliability relative to

the maximum possible improvement is equal to:

Safety:

The safety executive pattern includes the

following four design techniques: program sequence

monitoring with a watchdog, test by redundant

In general, we think that the combination of

these techniques and the development cost makes the

safety executive pattern suitable and highly

recommended only for very high critical applications

with high safety integrity levels (SIL4 and SIL3) and

recommended for lower levels (SIL2 and SIL 1).

Cost:

This pattern is an expensive pattern with very high

cost since it consists of different components that

involve high recurring and development cost.

 Recurring cost: It includes the cost of the

following:

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 266

hardware (the watchdog that initiates the integrity

check and BITs), safety bag techniques, and graceful

degradation. According to the standard IEC 61508 [3],

the recommendation for these techniques is shown

Table 1.

Techniques SIL1 SIL2 SIL3 SIL4

Program

sequence

monitoring

HR HR HR HR

Test by

redundant

hardware

R R R R

Safety bag

techniques

--- R R R

Graceful

degradation

R R HR HR

• The actuation channel.

• The fail-safe processing channel (if present).

• The safety executive component.

• Watchdogs and their independent timing source.

Development cost: In general, the development cost

for this pattern is very high since it includes a

development of three different systems (channels) hat

including different architectures and different designs.

Modifiability:

There are two types of possible modifications:

1) Actuation Channel: It is very simple to modify

this pattern by adding extra functionality to the

actuation channel. The only things that should be done:

is to know whether the new components need to send

stroke messages to the watchdog.

2) Safety policy: One of the main features of this

pattern is the centralized safety processing which is

performed by the Safety Executive Component. The

Safety Executive separates the coordinator from the

safety policies to simplify the change and modification

of the safety policy and to make it easier. Impact on

execution time:

 The actuation channel and the safety executive have

different CPUs and different memories, and they run

simultaneously in parallel. Thus, there is no effect for

the safety executive component on the actuation

channel during the normal operation of the system

except the execution of the periodic built in tests.

Implementation

The following points should be taken into

consideration during the implementation of this pattern:

• The actuation channel, the safety executive, and the

fail-safe processing channel run separately in

parallel, therefore each channel will run on its own

processing unit and own memory.

• The safety-critical information must be protected

against data corruption, e.g. by using CRCs or any

other method to detect data errors.

• The watchdog component is simple and often

implemented as a separate hardware device. It is

capable of detecting a variety of hardware and

software fault. However its actual diagnostic

coverage depends on the integrity check

implemented in the actuation channel.

• To provide protection from faults in a common time

base, separate timing sources must be used for the

watchdog, the safety executive and the actuation

channel.

Consequences and Side Effects

The main drawback of this pattern is the high

complexity of this pattern for implementation.

Therefore it is used for complex and highly

safetycritical systems.

Related Patterns

The safety executive pattern is used for complex

safety critical applications and it covers a large set of

features, provided by of the other patterns, such as

sequence monitoring provide by watchdog, switch-

tobackup as in the fail-safe channel. For simpler

systems with simpler safety requirements, other simpler

patterns, such as Watchdog pattern, Sanity Check

pattern and Monitor Actuator pattern [11], can be used.

 VI. CONCLUSIONS

 The design of safety-critical embedded applications

requires an integration of the commonly used software

and hardware design methods.

Therefore, the use of design pattern is very promising

in this application domain, if the specific properties of

embedded systems are considered in the pattern

representation. In this paper, we proposed an extended

pattern representation for the design of safety-critical

embedded applications. This representation focuses on

the implications and side effects of the represented

design method on the non-functional requirements of

the safety-critical embedded system including safety,

reliability, modifiability, cost and execution time. Two

example patterns have been used to show the

effectiveness of the proposed pattern representation.

We expect that this extended representation will guide

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 267

the selection of a suitable design as it allows evaluating

alternative patterns with respect to their implications.

 VII. FUTURE RESEARCH DIRECTIONS

For a successful application of the proposed

representation of design patterns for safety-critical

embedded systems, an integration of a higher number

of design patterns is desirable. For this reason, we

currently construct a pattern catalogue based on the

proposed representation by collecting and classifying

commonly used hardware and software design

methods. Moreover, it is intended to construct the

catalogue such that an automatic recommendation of

suitable design methods for a given application can be

achieved in the future.

References

[1]. Acharyulu, P. (2015). A Framework for Safety

Assessment in Software Intensive Critical Systems.

Safety Science , 77 (01), 113-120.

[2] C. Alexander, “A Pattern Language: Towns,

Buildings, Construction,” New York: Oxford

University Press, 1977.

[3] E. Gama, R. Helm, R. Johnson, and J. Vlissides,

“Design patterns: Element of reusable

objectoriented software,” New York: Addison-

Wesley, 1997.

[4] IEC61508 Functional safety for electrical/

electronic / programmable electronic

safetyrelated systems, International Electro

technical Commission, 1998.

[5] A. Armoush, F. Salewski, and S. Kowalewski,

“Effective pattern representation for safety critical

embedded systems,” International Conference on

Computer Science and Software Engineering

(CSSE 2008), pp. 91-97, 2008.

[6] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal “Pattern-oriented software

architecture: A system of patterns,” John Wiley &

Sons, Inc., New York, NY, 1996.

[7] P. Coad, “Object-oriented patterns,”

Communications of the ACM, Vol. 35, pp. 152159,

1992.

[8] K. Beck and W. Cunningham, “Using pattern

languages for object-oriented programs,” Presented

at the OOPSLA- 87 Workshop on Specification and

Design for Object- Oriented Programming.

[9] J. Coplien, “Idioms and patterns as architectural

literature,” IEEE Software, Vol. 14, pp. 36-42,

1997.

[10] B. Appleton.“Patterns and software: Essential

concept and terminology,” available at

<http://www.enteract.com/~bradapp/docs/patternsi

ntro.html>.

[11] B. P. Douglass, “Doing hard time: Developing

real-time system with UML, objects, frameworks,

and pattern,” New York: Addison-Wesley, 1999.

[12] B. P. Douglass, “Real-time design patterns,”

New York: Addison-Wesley, 2003. [13] D. Gross

and E. Yu, “From non-functional requirements to

design through patterns,” Requirements

Engineering, Vol. 6, No. 1, pp. 1836, 2002.

[14] J. Cleland-Huang and D.

 Schmelzer,

“Dynamically tracing non-functional requirements

through design pattern invariants,” Workshop on

Traceability in Emerging Forms of Software

Engineering, in conjunction with IEEE International

Conference on Automated Software Engineering,

2003.

[15] J. Fletcher and J. Cleland-Huang, “Softgoal

traceability patterns,” in Proceedings of the 17th

IEEE International Symposium on Software

Reliability Engineering (ISSRE 2006), pp.

363374, 2006.

[16] L. Xu, H. Ziv, T. A. Alspaugh, and D. J.

Richardson, “An architectural pattern for

nonfunctional dependability requirements,”

Journal of Systems and Software, Vol. 79, No.

10, pp. 13701378, 2006.

[17] S. Konrad and B. Cheng, “Requirements

patterns for embedded systems,” in Proceedings

of the IEEE Joint International Requirements

Engineering Conference (RE’02), pp. 127-136,

2002.

http://www.ijcrt.org/

