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Abstract

Resilient Design Patterns is of considered opinion of
the experts in the field of software engineering for
safety. Thus the need for robust design Patterns
towards concise and compact solutions for
compromising safety aspects of design issues both in
software and hardware designs. Therefore it is
necessary to account for functional and non-functional
requirements in the design patterns of safety-critical
computer systems.

This work focuses on integration of non-functional
requirements & implications to the prevailing design
pattern concept. In order, this paper proposes a new
pattern for safety-critical computer application through
rigorous study of design methods by including fields for
the implications, complications and unforeseen
peripheral issues of the traditional design patterns based
on non-functional requirements of the entire systems.
The paper also considers requirements including
designs for safety, reliability, modifiability, cost, and
execution time.  The overall study indicated and
showed improved results that the proposed new design
pattern can be of better use in safety-critical computer
systems.

Keywords: Design Pattern, Embedded Systems,
Non-Functional Requirements, Safety-Critical
Computer Systems
Notations:

Rac: The reliability of the actuation channel.
(Rola= RAc)

Rsc: The reliability of the fail-safe processing channel.

Rse: The reliability of the

safety executive component.

C: The coverage factor which is defined as: the
probability that a fault in an actuation channel will
be identified by the safety executive and the fail-
safe processing channel will be activated.

Rnew = The reliability after using this patteren
Roia = The reliability of the basic system

. INTRODUCTION

Design pattern, originally proposed in (Acharyulu,
2015) by the architect Christopher Alexander, is a
universal approach to describe common solutions to
widely recurring design problems. Ever since, this
concept has been applied in several domains of
hardware design (electronics) and also became popular
in the software domain after the success of the book
Design Patterns: Element of Reusable object oriented
Software by Gama et al. [2].

As the concept of design pattern aims at supporting
designers and system architects in their choice of
suitable solutions for commonly recurring design
problems, this concept might also be useful to support
the design of safety-critical embedded systems. The
design of these systems is considered to be a complex
process, as hard- ware and software components have
to be considered during the design as well as potential
interactions between hardware and/or software
components.  Moreover, not only functional
requirements' have to be fulfilled by these systems.
Failures in safety-critical systems could result in critical
situations that may lead to serious injury or loss of life
or unacceptable damage to the environment. Therefore,
also the non-functional requirement safety has to be
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considered in these systems to assure that the risk of
hazards is acceptable low in the considered system. To
support the design of safe devices, safety measures are
given by international safety standards as the IEC61508
[3]. Beside life cycle and process requirements, also
different measures for the design of software and
hardware components are recommended. These safety
measures have typically an impact on the cost, the
reliability, the real time behavior of the system, and on
the modifiability of the resulting system. Depending on
the application domain of the later embedded system,
these non-functional requirements are of great
importance.  For  this  reason,  nonfunctional
requirements should be considered during the design of
any safety-critical system.

While current concepts of design pattern exist for
many different application domains, they typically lack
a consideration of potential side effects on
nonfunctional requirements. In order to integrate these
side effects into the pattern concept, we propose an
extended template for an effective design pattern
representation for safety-critical applications.

This pattern representation includes the traditional
pattern concept in combination with an extension
describing the implications and side effects with respect
to the non-functional requirements. While this concept
has been described briefly in [4] before, this work
focuses on the application of our approach. Thus, two
example patterns are included to illustrate the proposed
representation of design patterns for software and
hardware components in safety-critical applications.

Section 1l discusses about the related work in
discipline, Section Ill describes about the outline of
Design Patterns, Section 1V details various implications
of non-functional requirements while integrating into
design patterns, Section V illustrates about some of the
example patterns, Section VI deals with the integration
with implications in integration of non-functional
requirements into design patterns, and concluding
remarks are given in Section V1|

1. RELATED WORK

The field of design pattern is large and still rapidly
growing. Many researchers have focused on the use of
design pattern in the software domain, but further
research is still needed in the domain of safety-critical
systems to integrate the non-functional requirements in
design patterns. In his books [10] and [11], Bruce
Douglass proposed several design patterns for safety-
critical systems based on well known fault tolerant
design methods and by integrating some modification
to increase the safety level on these patterns. Gross and
Yu [12] discuss the relationship between non-
functional requirements and design patterns, and
propose a systematic approach for evaluating design
patterns with respect to nonfunctional requirements.

They propose the use of design patterns for
establishing traces between non-functional goals in a
goal tree such as a soft goal interdependency graph
(SIG) and the system design. Cleland-Huang et al.
enhance the patterns defined by Gross and Yu [12]
through defining a model for establishing traceability
between certain types of non-functional requirements
and design and code artifacts, through the use of design
patterns as intermediary objects. Xu [15] classified the
dependability needs into three types of requirements
and proposed an architectural pattern that allows
requirements engineers and architects to map
dependability requirements into three corresponding
types of architectural components. Konord [16, 17]
describe a research of how the principle of design
pattern can be applied to requirements specifications,
which they term. requirements patterns for embedded
systems. They include a constraints field in the pattern
template to show the functional and non-functional
restrictions that are applied to the system.

In comparison to our work, none of the
aforementioned approaches show clearly the
implications on the non-functional requirements as part
of the pattern. These patterns and the other
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developed patterns focus on the traditional structure of the

i ) Pattern Template
pattern that includes: context, problem and solution. The use ; "
of non-functional requirements in these approaches is Pattern Name | A Meaningful name (list of words) to describe the pattern
. . . . uniquely and this name will be used as 2 handle to this pattern.
restricted to the requirement analysis phase of the design L ’ )
process. In these approaches, neither a relative measure nor ( Other Names | The other wellkmovwn names forthe paten, i exits.

an indication for the implications of the patterns on the non-
functional requirements, were given. To improve these
approaches, we propose a new template representation in

The classification of the design pattern mto either Hardware
design pattem, Software Design pattem, or 2 combmation of

both
Section 4 to show the implications of the represented
. P . P Abstract | The field presents 2 short description of the pattem. )
patterns on the non-functional requirements. bbbl |
-
1. DESIGN PATTERN OQUTLINE Context | 1he gemeral salutation i which the designer may use this

pattem

In this section, the template pattern we propose for the —— —

representation of design patterns for safety critical Problem ;}‘5551;]"?‘ ef‘;:ﬁ“‘pﬁf““ﬂm pble N Skl
embedded applications is described. As depicted in Figure :
1, the upper part of the template includes the traditional
representation of a design pattern while a listing of the
pattern implications on the non-functional requirements is
given in the Implication section. Moreover, further support
is given by stating implementation issues, summarizing the Implication | The consequences on the non-functional requirements
consequences and side effects as well as a listing of related
patterns.

This s the mai part of the pattem, since it represents a solution
to the problem under consideration. It provides the mam
element of the pattem, the relation between these elements, and
how they cooperate to solve the problem.

J

N 2\l N[ & M
&
oos |
o
g ®
L

Reliability

Figure-1. The design pattern outline =

Modifizbiliy

i

Execution Time

This part gives the aspects, hits, techniques that should be )

Implementation 7 Sl - :
taken mto consideration when mplementing the pattem

This part mcludes the side effects and disadvantages that may

Consequences SR ;
appear due to the application of this pattem.

Related Pattern | 12 rglated design pattems © thi§ patterm, and possibility to
combine the related pattem with this one.

Input Data . .
Source Figure 1. The design pattern template

execution time. To allow a suitable description of

(I\fI I\

Processing Channel these implications, the changes/improvements of

h 4 - - .

Tnput usmg the corres_pon_dlng design patt_ern are repr(_esente_d

Processing relative to a basic simple system (Figure 2). This basic
7 system has a given reliability (Roi), a given cost, a

Data given modifiability and is resulting in a given

Processing executing time. Moreover, this basic system has no
v specific safety measurements.

Output

Processing

Output Data and
Control Signals

Figure 2. Basic System without specific safety requirements

The proposed design outline includes a part for
pattern  implications on the non-functional
requirements reliability, safety, cost, modifiability and
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V. THE IMPLICATION ON NON-
FUNCTIONAL

REQUIREMENTS

While the main part of the design pattern
proposed does not differ from well known approaches
[18, 19, 20, 21], the part for the implications on the
non-functional requirements is described in this
section. As mentioned above, the implications are
stated relative to the basic system without any specific
safety method. In the following, the determination of
the five implications on nonfunctional requirements is
described:

Reliability: In this context, reliability is defined as the
probability that of a system or component to perform
its required functions correctly under stated
conditions for a specified period of time. This part of
implications describes the relative improvement in the
system’s reliability relative to the maximum possible
improvement in reliability, which is defined in the
following equation:

Rpew — R
Reliability Improvement = —new ol L 100%
1=Rod

Ruew = The reliability after using this patteren

Roid = The reliability of the basic system

Safety: The safety of a system is usually determined by
the residual risk of operating this system (see e.g.
[3]). Therefore; the notion of risk can be used as a
measure for the assessment of safety-critical systems.
The problem concerning design patterns is that they
describe an abstract solution to a commonly recurring
design problem. As it is not related to a specific
application or to a specific case, it is difficult to
determine an actual value for the possible residual risk
without considering a concrete application. To allow an
indication of the safety that can be achieved by the
application of a specific design pattern, existing
recommendations given in safety standards are used.

In detail, it is stated to which Safety Integrity Level
(SIL) the pattern is recommended in a given safety
standard. The safety integrity levels used here include
the levels SIL1 to SIL4 as they are defined in the
standard IEC61508 [3]. Additionally, the notation SILO
is used in this template to describe a system without
specific safety requirements. If measures are described
in design patterns that are not included in current safety
standards, these measures have to be assessed in an
appropriate manner, e.g. by comparing them to
measures with known recommendations.

Cost: The implications on costs include: The recurring
cost per unit, which reflects the additional costs
resulting from additional or specific hardware

components required by the design pattern and the
development cost of applying this pattern.

Modifiability: This implication describes the degree to
which the system developed according to this design
pat- tern can be modified and changed.

Impact on execution time: With this implication, the
effect of the pattern on the total time of execution at
run- time is indicated. It shows the execution time
overhead that is resulting from the application of this
pattern in the worst and the average cases.

The application of the design pattern proposed,
especially the use of the implication part introduced
briefly in this section, is described in form of two
example patterns in the following section.

V. EXAMPLE PATTERNS

Two example patterns are presented in this section
to illustrate the application of the proposed approach:
The first pattern is a hardware and software pattern that
is expected to be suitable for complex and highly
safety-critical systems. The second pattern is a hybrid
software fault tolerance method intended to increase the
reliability of the standard N-version programming
approach (Acceptance Voting Pattern).

1. Example 1

In this example pattern, the pattern originally
described in [10] is presented in our extended pattern
representation including also - implications on
nonfunctional requirements.

Pattern Name
Safety Executive Pattern (SEP)
Other Names

Safety Kernel Pattern
Type

Hardware and Software
Abstract

The Safety Executive Pattern can be considered
as an extension of the Watchdog Pattern* targeting the
problem that a shutdown of the system by the actuation
channel itself might be critical in the presence of faults
(shutdown might fail or take too long). This problem
occurs especially in those systems in which a
complicated series of steps involving several
components is necessary to reach a fail-safe state.
Therefore, the Safety Executive Pattern uses a
watchdog in combination with an additional safety
executive component, which is responsible for the shut-
down of the system as soon as the watchdog sends a
shut down, signal (see also Figure 3. the safety
executive pattern). If the system has a safe state, the
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actuation channel is shutdown via the safety executive
component. Otherwise, the safety executive component
has to dele- gate all actuations necessary to an
additional fail-safe processing channel.

Context:

The application of this pattern is suitable in the
following context:

» The considered actuation channel requires a risk
reduction by safety measures.

» The considered system has at least one safe state. If
this is not the case, an additional fail-safe processing
channel has to be applied to overtake necessary
actions.

» A shutdown of the actuation channel is complex. As
an example, this is the case if several safetyrelated
system actions have to be controlled
simultaneously.

» A sufficient determination of failures in the
actuation channel can be achieved by a watchdog.

Problem

Provision of a centralized and consistent
method for monitoring and controlling the execution of
a complex safety measure (shutdown or switch over to
redundant unit in case of failures).

Pattern Structure

The Safety Executive Pattern is based on an
actuation channel to perform the required functionality
and an optional fail-safe processing channel that is
dedicated to the execution and control of the fail-safe
processing (see also Figure 3). The central part of this
pattern is the existence of a centralized safety executive
component coordinating all safety-measures required to
shut down the system or to switch over to the fail-safe
processing channel. The safety executive component
can also be used to control multiple actuation channels
in the system that each may have multiple channels.

The components of the pattern depicted in Figure 3 are
described below:

. Input Data Source: This component
represents the source of information that is used as
input to the system under consideration. Typically, this
data comes either from the system user or from external
sensors that are used to monitor environmental
variables such as: temperature, pressure, speed, light,
etc...

. Actuator(s): Actuators are the physical
devices that perform the action of the channel like:
motors, switches, heaters, signals, or any other device
that performs a specific action. Often, there are more
than one actuator in a single channel.

. Actuation Channel: This channel represents a
sub- system that performs dedicated tasks in the overall
system by taking an input data from the input data
source, per- forms some transformation on this data,
and then uses the results to generate suitable commands
to drive the actuators.

. Fail-Safe Processing Channel: This is an
optional channel; it is dedicated to the execution and
control of the fail-safe processing. In the presence of a
fault in the actuation channel, the safety executive turns
off the actuation channel, and the fail-safe channel
takes over. If the System doesn’t have a fail-Safe
Channel, then the actuation channels must have at least
one reachable safe state.

. Data Acquisition (Input Processing): This
part of the channel collects the raw data from the input
data source and may perform some data formatting or
transformations.

. Data Processing (Transformation): This part
may contain multiple data transformation components;
where each one performs a single transformation or
processing on the received data to execute the desired
algorithm in order to generate the required control
signals. The final component of this part sends the
computed output to the output processing unit.

. Output Processing: This unit takes the
computed data from the data transformation unit and
generates the final data and the control signals to drive
the actuators. It can be considered as a device driver for
the actuator.

. Integrity Check: -This is an optional
component that is invoked by the watchdog to run a
periodic Built-In Test (BIT) to verify all or a portion of
the internal functionality of the actuation channel.

. Time Base: This is an independent timing
source (timing circuit) that is used to drive the
watchdog. This time source has to be separate from the
one used to drive the actuation channel.

. Watchdog (WD): The watchdog receives
liveness messages (strokes) from the components of the
actuation channel in a predefined timeframe. If a stroke
comes too late or out of sequence, the watchdog
considers this situation as a fault in the actuation
channel and it issues a shutdown signal to the actuation
channel or initiates a corrective action through sending
a command signal to the optional integrity check. If the
system contains multiple actuation channels, then it
may contain multiple watchdogs, one per actuation
channel.

. Safety Executive: This is the main component
in this safety executive pattern. It tracks and
coordinates all safety monitoring to ensure the
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execution of safety action when appropriate. It consists
of a safety coordinator that controls safety measures
and safety policies. The safety executive component
captures the shutdown signal from the watchdog in the
case of failure in the actuation channel.

. Safety Coordinator: The safety coordinator is
used to control and coordinate the safety processing
that is managed by the safety measures. It also executes
the control algorithms that are specified by the safety
policies.

. Safety Measures: Include the detailed
description of the safety measures. The safety
coordinator may control multiple safety measures.

. Safety Policies: Each safety policy specifies a
strategy or control algorithm for the safety coordinator.
It involves a complicated sequence of steps that involve
multiple safety measures. The reason for the separation
of the coordinator from the safety policies is to make
the process of changing and adapting a safety policy
easier.

Implication
O This section describes the implication of this pattern

relative to the basic system without a specific safety
method.

Reliability
Let us have the following notations:

Rac: The reliability of the actuation channel. (Roid =
Rac)
Rsc: The reliability of the fail-safe processing channel.

Actuator
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Actuation Channel
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Figure 3. The safety executive pattern

Rse: The  reliability of the

safety executive component.

C: The coverage factor which is defined as: the

probability that a fault in an actuation channel will be

identified by the safety executive and the fail-safe
processing channel will be activated.

Assume that the watchdogs are carefully
designed with reliability=1.

The safety executive pattern will continue to work

without system failure as long as one of the following

two conditions holds:

* There is no fault in the actuation channel.

* There is a fault in the actuation channel and the
watchdog detects this fault and the safety executive
initiates a shutdown or activates the fail-safe
processing channel.

The new reliability after using this pattern (Rnew) is
equal to:
R =Rpc + CRgsp(1—Rac)Rsc
In this equation, the first term represents the
reliability of the actuation channel while the second
term represents the reliability of the remaining parts in
the case of failure in the actuation channel.
Figure-3. The Safety Executive pattern

The percentage improvement in reliability relative to
the maximum possible improvement is equal to:
_ Rac + CRsg (1 —Rpc)Rsc — Rag

*100%
1— Ry ?

Safety:

The safety executive pattern includes the
following four design techniques: program sequence
monitoring - with a watchdog, test by redundant

In general, we think that the combination of
these techniques and the development cost makes the
safety executive pattern suitable and highly
recommended only for very high critical applications
with high safety integrity levels (SIL4 and SIL3) and
recommended for lower levels (SIL2 and SIL 1).

Cost:

This pattern is an expensive pattern with very high
cost since it consists of different components that
involve high recurring and development cost.

O Recurring cost: It includes the cost of the
following:
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hardware (the watchdog that initiates the integrity
check and BITS), safety bag techniques, and graceful
degradation. According to the standard IEC 61508 [3],
the recommendation for these techniques is shown
Table 1.

Techniques SIL1 | SIL2 | SIL3 | SIL4
Program HR HR HR HR
sequence
monitoring
Test by R R R R
redundant
hardware
Safety bag R R R
techniques
Graceful R R HR HR
degradation

» The actuation channel.
* The fail-safe processing channel (if present).
» The safety executive component.

» Watchdogs and their independent timing source.

Development cost: In general, the development cost
for this pattern is very high since it includes a
development of three different systems (channels) hat
including different architectures and different designs.

Modifiability:
There are two types of possible modifications:

1) Actuation Channel: It is very simple to modify
this pattern by adding extra functionality to the
actuation channel. The only things that should be done:
is to know whether the new components need to send
stroke messages to the watchdog.

2) Safety policy: One of the main features of this
pattern is the centralized safety processing which is
performed by the Safety Executive Component. The
Safety Executive separates the coordinator from the
safety policies to simplify the change and modification
of the safety policy and to make it easier. Impact on
execution time:

The actuation channel and the safety executive have
different CPUs and different memories, and they run
simultaneously in parallel. Thus, there is no effect for
the safety executive component on the actuation
channel during the normal operation of the system
except the execution of the periodic built in tests.

Implementation

The following points should be taken into
consideration during the implementation of this pattern:

» The actuation channel, the safety executive, and the
fail-safe processing channel run separately in
parallel, therefore each channel will run on its own
processing unit and own memory.

* The safety-critical information must be protected
against data corruption, e.g. by using CRCs or any
other method to detect data errors.

* The watchdog component is simple and often
implemented as a separate hardware device. It is
capable of detecting a variety of hardware and
software fault. However its actual diagnostic
coverage depends on the integrity check
implemented in the actuation channel.

» To provide protection from faults in a common time
base, separate timing sources must be used for the
watchdog, the safety executive and the actuation
channel.

Consequences and Side Effects

The main drawback of this pattern is the high
complexity of this pattern for implementation.
Therefore it is used for complex and highly
safetycritical systems.

Related Patterns

The safety executive pattern is used for complex
safety critical applications and it covers a large set of
features, provided by of the other patterns, such as
sequence monitoring provide by watchdog, switch-
tobackup as in the fail-safe channel. For simpler
systems with simpler safety requirements, other simpler
patterns, such as Watchdog pattern, Sanity Check
pattern and Monitor Actuator pattern [11], can be used.

VI. CONCLUSIONS

The design of safety-critical embedded applications
requires an integration of the commonly used software
and hardware design methods.

Therefore, the use of design pattern is very promising
in this application domain, if the specific properties of
embedded systems are considered in the pattern
representation. In this paper, we proposed an extended
pattern representation for the design of safety-critical
embedded applications. This representation focuses on
the implications and side effects of the represented
design method on the non-functional requirements of
the safety-critical embedded system including safety,
reliability, modifiability, cost and execution time. Two
example patterns have been used to show the
effectiveness of the proposed pattern representation.
We expect that this extended representation will guide
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the selection of a suitable design as it allows evaluating
alternative patterns with respect to their implications.

VIL. FUTURE RESEARCH DIRECTIONS

For a successful application of the proposed
representation of design patterns for safety-critical
embedded systems, an integration of a higher humber
of design patterns is desirable. For this reason, we
currently construct a pattern catalogue based on the
proposed representation by collecting and classifying
commonly used hardware and software design
methods. Moreover, it is intended to construct the
catalogue such that an automatic recommendation of
suitable design methods for a given application can be
achieved in the future.
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