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Abstract  

Resilient Design Patterns is of considered opinion of 

the experts in the field of software engineering for 

safety.  Thus the need for robust design Patterns 

towards concise and compact solutions for 

compromising safety aspects of design issues both in 

software and hardware designs. Therefore it is 

necessary to account for functional and non-functional 

requirements in the design patterns of safety-critical 

computer systems.    

This work focuses on integration of non-functional 

requirements & implications to the prevailing design 

pattern concept.  In order, this paper proposes a new 

pattern for safety-critical computer application through 

rigorous study of design methods by including fields for 

the implications, complications and unforeseen 

peripheral issues of the traditional design patterns based 

on non-functional requirements of the entire systems. 

The paper also considers requirements including 

designs for safety, reliability, modifiability, cost, and 

execution time.   The overall study indicated and 

showed improved results that the proposed new design 

pattern can be of better use in safety-critical computer 

systems.  

Keywords: Design Pattern, Embedded Systems, 

Non-Functional Requirements, Safety-Critical 

Computer Systems  

Notations:  

RAC: The reliability of the actuation channel.  

(Rold= RAC)  

RSC: The reliability of the fail-safe processing channel.   

RSE:  The  reliability  of  the 

 safety  executive component.   

C: The coverage factor which is defined as: the 

probability that a fault in an actuation channel will 

be identified by the safety executive and the fail-

safe processing channel will be activated.  

Rnew = The reliability after using this patteren   

Rold = The reliability of the basic system  

I. INTRODUCTION  

Design pattern, originally proposed in (Acharyulu, 

2015)  by the architect Christopher Alexander, is a 

universal approach to describe common solutions to 

widely recurring design problems. Ever since, this 

concept has been applied in several domains of 

hardware design (electronics) and also became popular 

in the software domain after the success of the book 

Design Patterns: Element of Reusable object oriented 

Software by Gama et al. [2].  

As the concept of design pattern aims at supporting 

designers and system architects in their choice of 

suitable solutions for commonly recurring design 

problems, this concept might also be useful to support 

the design of safety-critical embedded systems. The 

design of these systems is considered to be a complex 

process, as hard- ware and software components have 

to be considered during the design as well as potential 

interactions between hardware and/or software 

components. Moreover, not only functional 

requirements1 have to be fulfilled by these systems. 

Failures in safety-critical systems could result in critical 

situations that may lead to serious injury or loss of life 

or unacceptable damage to the environment. Therefore, 

also the non-functional requirement safety has to be 
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considered in these systems to assure that the risk of 

hazards is acceptable low in the considered system. To 

support the design of safe devices, safety measures are 

given by international safety standards as the IEC61508 

[3]. Beside life cycle and process requirements, also 

different measures for the design of software and 

hardware components are recommended. These safety 

measures have typically an impact on the cost, the 

reliability, the real time behavior of the system, and on 

the modifiability of the resulting system. Depending on 

the application domain of the later embedded system, 

these non-functional requirements are of great 

importance. For this reason, nonfunctional 

requirements should be considered during the design of 

any safety-critical system.  

While current concepts of design pattern exist for 

many different application domains, they typically lack 

a consideration of potential side effects on 

nonfunctional requirements. In order to integrate these 

side effects into the pattern concept, we propose an 

extended template for an effective design pattern 

representation for safety-critical applications.   

This pattern representation includes the traditional 

pattern concept in combination with an extension 

describing the implications and side effects with respect 

to the non-functional requirements. While this concept 

has been described briefly in [4] before, this work 

focuses on the application of our approach. Thus, two 

example patterns are included to illustrate the proposed 

representation of design patterns for software and 

hardware components in safety-critical applications.  

Section II discusses about the related work in 

discipline, Section III describes about the outline of 

Design Patterns, Section IV details various implications 

of non-functional requirements while integrating into 

design patterns, Section V illustrates about some of the 

example patterns, Section VI deals with the integration 

with implications in integration of non-functional 

requirements into design patterns, and concluding 

remarks are given in Section VII  

 II.  RELATED WORK  

The field of design pattern is large and still rapidly 

growing. Many researchers have focused on the use of 

design pattern in the software domain, but further 

research is still needed in the domain of safety-critical 

systems to integrate the non-functional requirements in 

design patterns. In his books [10] and [11], Bruce 

Douglass proposed several design patterns for safety-

critical systems based on well known fault tolerant 

design methods and by integrating some modification 

to increase the safety level on these patterns. Gross and 

Yu [12] discuss the relationship between non-

functional requirements and design patterns, and 

propose a systematic approach for evaluating design 

patterns with respect to nonfunctional requirements.   

They propose the use of design patterns for 

establishing traces between non-functional goals in a 

goal tree such as a soft goal interdependency graph 

(SIG) and the system design. Cleland-Huang et al. 

enhance the patterns defined by Gross and Yu [12] 

through defining a model for establishing traceability 

between certain types of non-functional requirements 

and design and code artifacts, through the use of design 

patterns as intermediary objects. Xu [15] classified the 

dependability needs into three types of requirements 

and proposed an architectural pattern that allows 

requirements engineers and architects to map 

dependability requirements into three corresponding 

types of architectural components. Konord  [16, 17] 

describe a research of how the principle of design 

pattern can be applied to requirements specifications, 

which they term requirements patterns for embedded 

systems. They include a constraints field in the pattern 

template to show the functional and non-functional 

restrictions that are applied to the system.  

In comparison to our work, none of the 

aforementioned approaches show clearly the 

implications on the non-functional requirements as part 

of the pattern. These patterns and the other  
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developed patterns focus on the traditional structure of the 

pattern that includes: context, problem and solution. The use 

of non-functional requirements in these approaches is 

restricted to the requirement analysis phase of the design 

process. In these approaches, neither a relative measure nor 

an indication for the implications of the patterns on the non-

functional requirements, were given. To improve these 

approaches, we propose a new template representation in 

Section 4 to show the implications of the represented 

patterns on the non-functional requirements.  

III. DESIGN PATTERN OUTLINE  

In this section, the template pattern we propose for the 

representation of design patterns for safety critical 

embedded applications is described. As depicted in Figure 

1, the upper part of the template includes the traditional 

representation of a design pattern while a listing of the 

pattern implications on the non-functional requirements is 

given in the Implication section. Moreover, further support 

is given by stating implementation issues, summarizing the 

consequences and side effects as well as a listing of related 

patterns.  

Figure-1. The design pattern outline  

  

  

The proposed design outline includes a part for 

pattern implications on the non-functional 

requirements reliability, safety, cost, modifiability and 

execution time. To allow a suitable description of 

these implications, the changes/improvements of 

using the corresponding design pattern are represented 

relative to a basic simple system (Figure 2). This basic 

system has a given reliability (Rold), a given cost, a 

given modifiability and is resulting in a given 

executing time. Moreover, this basic system has no 

specific safety measurements.  
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IV. THE IMPLICATION ON NON-

FUNCTIONAL  

REQUIREMENTS  

While the main part of the design pattern 

proposed does not differ from well known approaches 

[18, 19, 20, 21], the part for the implications on the 

non-functional requirements is described in this 

section. As mentioned above, the implications are 

stated relative to the basic system without any specific 

safety method. In the following, the determination of 

the five implications on nonfunctional requirements is 

described:  

Reliability: In this context, reliability is defined as the 

probability that of a system or component to perform 

its required functions correctly under stated 

conditions for a specified period of time. This part of 

implications describes the relative improvement in the 

system’s reliability relative to the maximum possible 

improvement in reliability, which is defined in the 

following equation:  

  

Safety: The safety of a system is usually determined by 

the residual risk of operating this system (see e.g. 

[3]).Therefore; the notion of risk can be used as a 

measure for the assessment of safety-critical systems. 

The problem concerning design patterns is that they 

describe an abstract solution to a commonly recurring 

design problem. As it is not related to a specific 

application or to a specific case, it is difficult to 

determine an actual value for the possible residual risk 

without considering a concrete application. To allow an 

indication of the safety that can be achieved by the 

application of a specific design pattern, existing 

recommendations given in safety standards are used.   

 In detail, it is stated to which Safety Integrity Level 

(SIL) the pattern is recommended in a given safety 

standard. The safety integrity levels used here include 

the levels SIL1 to SIL4 as they are defined in the 

standard IEC61508 [3]. Additionally, the notation SIL0 

is used in this template to describe a system without 

specific safety requirements. If measures are described 

in design patterns that are not included in current safety 

standards, these measures have to be assessed in an 

appropriate manner, e.g. by comparing them to 

measures with known recommendations.  

Cost: The implications on costs include: The recurring 

cost per unit, which reflects the additional costs 

resulting from additional or specific hardware 

components required by the design pattern and the 

development cost of applying this pattern.  

Modifiability: This implication describes the degree to 

which the system developed according to this design 

pat- tern can be modified and changed.  

Impact on execution time: With this implication, the 

effect of the pattern on the total time of execution at 

run- time is indicated. It shows the execution time 

overhead that is resulting from the application of this 

pattern in the worst and the average cases.  

The application of the design pattern proposed, 

especially the use of the implication part introduced 

briefly in this section, is described in form of two 

example patterns in the following section.  

 V.  EXAMPLE PATTERNS  

Two example patterns are presented in this section 

to illustrate the application of the proposed approach: 

The first pattern is a hardware and software pattern that 

is expected to be suitable for complex and highly 

safety-critical systems. The second pattern is a hybrid 

software fault tolerance method intended to increase the 

reliability of the standard N-version programming 

approach (Acceptance Voting Pattern).    

1.  Example 1  

In this example pattern, the pattern originally 

described in [10] is presented in our extended pattern 

representation including also implications on 

nonfunctional requirements.  

Pattern Name  

Safety Executive Pattern (SEP)  

Other Names  

Safety Kernel Pattern  

Type  

Hardware and Software  

Abstract  

The Safety Executive Pattern can be considered 

as an extension of the Watchdog Pattern4 targeting the 

problem that a shutdown of the system by the actuation 

channel itself might be critical in the presence of faults 

(shutdown might fail or take too long). This problem 

occurs especially in those systems in which a 

complicated series of steps involving several 

components is necessary to reach a fail-safe state. 

Therefore, the Safety Executive Pattern uses a 

watchdog in combination with an additional safety 

executive component, which is responsible for the shut- 

down of the system as soon as the watchdog sends a 

shut down, signal (see also Figure 3. the safety 

executive pattern). If the system has a safe state, the 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1134489 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 264 
 

actuation channel is shutdown via the safety executive 

component. Otherwise, the safety executive component 

has to dele- gate all actuations necessary to an 

additional fail-safe processing channel.  

Context:  

The application of this pattern is suitable in the 

following context:  

 The considered actuation channel requires a risk 

reduction by safety measures.  

 The considered system has at least one safe state. If 

this is not the case, an additional fail-safe processing 

channel has to be applied to overtake necessary 

actions.  

 A shutdown of the actuation channel is complex. As 

an example, this is the case if several safetyrelated 

system actions have to be controlled 

simultaneously.  

 A sufficient determination of failures in the 

actuation channel can be achieved by a watchdog.  

Problem  

Provision of a centralized and consistent 

method for monitoring and controlling the execution of 

a complex safety measure (shutdown or switch over to 

redundant unit in case of failures).  

Pattern Structure  

The Safety Executive Pattern is based on an 

actuation channel to perform the required functionality 

and an optional fail-safe processing channel that is 

dedicated to the execution and control of the fail-safe 

processing (see also Figure 3). The central part of this 

pattern is the existence of a centralized safety executive 

component coordinating all safety-measures required to 

shut down the system or to switch over to the fail-safe 

processing channel. The safety executive component 

can also be used to control multiple actuation channels 

in the system that each may have multiple channels.  

The components of the pattern depicted in Figure 3 are 

described below:  

• Input Data Source: This component 

represents the source of information that is used as 

input to the system under consideration. Typically, this 

data comes either from the system user or from external 

sensors that are used to monitor environmental 

variables such as: temperature, pressure, speed, light, 

etc...  

• Actuator(s): Actuators are the physical 

devices that perform the action of the channel like: 

motors, switches, heaters, signals, or any other device 

that performs a specific action. Often, there are more 

than one actuator in a single channel.  

• Actuation Channel: This channel represents a 

sub- system that performs dedicated tasks in the overall 

system by taking an input data from the input data 

source, per- forms some transformation on this data, 

and then uses the results to generate suitable commands 

to drive the actuators.  

• Fail-Safe Processing Channel: This is an 

optional channel; it is dedicated to the execution and 

control of the fail-safe processing. In the presence of a 

fault in the actuation channel, the safety executive turns 

off the actuation channel, and the fail-safe channel 

takes over. If the System doesn’t have a fail-Safe 

Channel, then the actuation channels must have at least 

one reachable safe state.  

• Data Acquisition (Input Processing): This 

part of the channel collects the raw data from the input 

data source and may perform some data formatting or 

transformations.  

• Data Processing (Transformation): This part 

may contain multiple data transformation components; 

where each one performs a single transformation or 

processing on the received data to execute the desired 

algorithm in order to generate the required control 

signals. The final component of this part sends the 

computed output to the output processing unit.  

• Output Processing: This unit takes the 

computed data from the data transformation unit and 

generates the final data and the control signals to drive 

the actuators. It can be considered as a device driver for 

the actuator.  

• Integrity Check: This is an optional 

component that is invoked by the watchdog to run a 

periodic Built-In Test (BIT) to verify all or a portion of 

the internal functionality of the actuation channel.  

• Time Base: This is an independent timing 

source (timing circuit) that is used to drive the 

watchdog. This time source has to be separate from the 

one used to drive the actuation channel.  

• Watchdog (WD): The watchdog receives 

liveness messages (strokes) from the components of the 

actuation channel in a predefined timeframe. If a stroke 

comes too late or out of sequence, the watchdog 

considers this situation as a fault in the actuation 

channel and it issues a shutdown signal to the actuation 

channel or initiates a corrective action through sending 

a command signal to the optional integrity check. If the 

system contains multiple actuation channels, then it 

may contain multiple watchdogs, one per actuation 

channel.  

• Safety Executive: This is the main component 

in this safety executive pattern. It tracks and 

coordinates all safety monitoring to ensure the 
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execution of safety action when appropriate. It consists 

of a safety coordinator that controls safety measures 

and safety policies. The safety executive component 

captures the shutdown signal from the watchdog in the 

case of failure in the actuation channel.  

• Safety Coordinator: The safety coordinator is 

used to control and coordinate the safety processing 

that is managed by the safety measures. It also executes 

the control algorithms that are specified by the safety 

policies.  

• Safety Measures: Include the detailed 

description of the safety measures. The safety 

coordinator may control multiple safety measures.  

• Safety Policies: Each safety policy specifies a 

strategy or control algorithm for the safety coordinator. 

It involves a complicated sequence of steps that involve 

multiple safety measures. The reason for the separation 

of the coordinator from the safety policies is to make 

the process of changing and adapting a safety policy 

easier.  

Implication  

 This section describes the implication of this pattern 

relative to the basic system without a specific safety 

method.  

Reliability  

Let us have the following notations:  

RAC: The reliability of the actuation channel. (Rold =  

RAC)  

RSC: The reliability of the fail-safe processing channel.   

RSE:  The  reliability  of  the 

 safety  executive component.   

C: The coverage factor which is defined as: the 

probability that a fault in an actuation channel will be 

identified by the safety executive and the fail-safe 

processing channel will be activated.  

Assume that the watchdogs are carefully 

designed with reliability=1.  

The safety executive pattern will continue to work 

without system failure as long as one of the following 

two conditions holds:  

• There is no fault in the actuation channel.  

• There is a fault in the actuation channel and the 

watchdog detects this fault and the safety executive 

initiates a shutdown or activates the fail-safe 

processing channel.  

The new reliability after using this pattern (Rnew) is 

equal to:  

  
In this equation, the first term represents the 

reliability of the actuation channel while the second 

term represents the reliability of the remaining parts in 

the case of failure in the actuation channel.  

Figure-3. The Safety Executive pattern  

The percentage improvement in reliability relative to 

the maximum possible improvement is equal to:  

  

Safety:  

The safety executive pattern includes the 

following four design techniques: program sequence 

monitoring with a watchdog, test by redundant 

  

In general, we think that the combination of 

these techniques and the development cost makes the 

safety executive pattern suitable and highly 

recommended only for very high critical applications 

with high safety integrity levels (SIL4 and SIL3) and 

recommended for lower levels (SIL2 and SIL 1).  

Cost:  

This pattern is an expensive pattern with very high 

cost since it consists of different components that 

involve high recurring and development cost.  

   Recurring cost: It includes the cost of the 

following:  
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hardware (the watchdog that initiates the integrity 

check and BITs), safety bag techniques, and graceful 

degradation. According to the standard IEC 61508 [3], 

the recommendation for these techniques is shown 

Table 1.  

Techniques  SIL1  SIL2  SIL3  SIL4  

Program 

sequence 

monitoring  

HR  HR  HR  HR  

Test by 

redundant 

hardware  

R  R  R  R  

Safety bag 

techniques  

---  R  R  R  

Graceful 

degradation  

R  R  HR  HR  

• The actuation channel.  

• The fail-safe processing channel (if present).  

• The safety executive component.  

• Watchdogs and their independent timing source.  

Development cost: In general, the development cost 

for this pattern is very high since it includes a 

development of three different systems (channels) hat 

including different architectures and different designs.  

Modifiability:  

There are two types of possible modifications:  

1) Actuation Channel: It is very simple to modify 

this pattern by adding extra functionality to the 

actuation channel. The only things that should be done: 

is to know whether the new components need to send 

stroke messages to the watchdog.  

2) Safety policy: One of the main features of this 

pattern is the centralized safety processing which is 

performed by the Safety Executive Component. The 

Safety Executive separates the coordinator from the 

safety policies to simplify the change and modification 

of the safety policy and to make it easier. Impact on 

execution time:  

 The actuation channel and the safety executive have 

different CPUs and different memories, and they run 

simultaneously in parallel. Thus, there is no effect for 

the safety executive component on the actuation 

channel during the normal operation of the system 

except the execution of the periodic built in tests.  

Implementation  

The following points should be taken into 

consideration during the implementation of this pattern:  

• The actuation channel, the safety executive, and the 

fail-safe processing channel run separately in 

parallel, therefore each channel will run on its own 

processing unit and own memory.  

• The safety-critical information must be protected 

against data corruption, e.g. by using CRCs or any 

other method to detect data errors.  

• The watchdog component is simple and often 

implemented as a separate hardware device. It is 

capable of detecting a variety of hardware and 

software fault. However its actual diagnostic 

coverage depends on the integrity check 

implemented in the actuation channel.  

• To provide protection from faults in a common time 

base, separate timing sources must be used for the 

watchdog, the safety executive and the actuation 

channel.  

Consequences and Side Effects  

The main drawback of this pattern is the high 

complexity of this pattern for implementation. 

Therefore it is used for complex and highly 

safetycritical systems.  

Related Patterns  

The safety executive pattern is used for complex 

safety critical applications and it covers a large set of 

features, provided by of the other patterns, such as 

sequence monitoring provide by watchdog, switch-

tobackup as in the fail-safe channel. For simpler 

systems with simpler safety requirements, other simpler 

patterns, such as Watchdog pattern, Sanity Check 

pattern and Monitor Actuator pattern [11], can be used.  

 VI.  CONCLUSIONS  

 The design of safety-critical embedded applications 

requires an integration of the commonly used software 

and hardware design methods.  

Therefore, the use of design pattern is very promising 

in this application domain, if the specific properties of 

embedded systems are considered in the pattern 

representation. In this paper, we proposed an extended 

pattern representation for the design of safety-critical 

embedded applications. This representation focuses on 

the implications and side effects of the represented 

design method on the non-functional requirements of 

the safety-critical embedded system including safety, 

reliability, modifiability, cost and execution time. Two 

example patterns have been used to show the 

effectiveness of the proposed pattern representation. 

We expect that this extended representation will guide 
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the selection of a suitable design as it allows evaluating 

alternative patterns with respect to their implications.  

 VII.  FUTURE RESEARCH DIRECTIONS  

For a successful application of the proposed 

representation of design patterns for safety-critical 

embedded systems, an integration of a higher number 

of design patterns is desirable. For this reason, we 

currently construct a pattern catalogue based on the 

proposed representation by collecting and classifying 

commonly used hardware and software design 

methods. Moreover, it is intended to construct the 

catalogue such that an automatic recommendation of 

suitable design methods for a given application can be 

achieved in the future.  
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