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ABSTRACT

This paper presents a family of product- cum- dual to ratio estimator for estimating finite population
mean of the variable under study. The bias and mean square error (MSE) of the proposed estimator is
obtained to the first degree approximation under simple random sampling without replacement
(SRSWOR) scheme. The asymptotically optimum estimators (AOEs) are recognised with its bias and
mean square error. A comparison has been made with some existing estimators viz.Sample mean per unit
estimator, usual ratio estimator Cochran, product estimator Robson & Murthy, dual to ratio estimator
Srivenkataraman and dual to product estimator Bandyopadhya. The proposed estimators are found to be

more efficient theoretically and numerically.
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1. INTRODUCTION:

In sample survey theory, it is seen that the use of auxiliary information in sample survey increases the
precision of the estimate of population mean of study variate. Consider a simple random sample of size n,

which is drawn by without replacement from a finite population of size N. Let Y,and X, denote the

values of the study and auxiliary variables respectively for the i unit (i =1,2,3,...N) of the population.
Let V:Zyi/nandY:in Inbe the sample means of the study and auxiliary variable yand x
i=1 i=1

respectively.

When the correlation between the study variabley and auxiliary variable x is highly positive,

Cochran (1940) used auxiliary information and proposed the usual ratio estimator for estimating

N
X ,where X =in /' N is known. When the correlation is

i=1

N
population mean Y =>"Y,/N of yasy, =

i=1

x| <
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highly negative between y and x, with known population mean X , Robson (1957) and Murthy (1964)

worked independently and proposed product estimator asy, ==X .

| <l

Using the transformation
x =(NX—-nx)/(N-n),(i=12,3..,N) or x =(1+@)X -gx,(i=123..,N),

Srivenkataramana (1980) and Bandopadhya (1980), suggested dual to ratio and dual to product estimator
as:

*

Va = V(XYJ andy, = (%) X respectively, where X = (NX —nx)/(N —n)andg =n/(N —n)

In this paper, we have proposed an estimator of combination of product estimator and dual to ratio estimator for

estimating population mean Y for its efficiency over other estimators.

2. PROPOSED ESTIMATOR:

Based on the estimators Yy, and V-, we proposed the following estimator as,

_ ax +b ax +b
T_y{a(a)?+bj+ﬂ(a)?+bj} 1)

where a(;t O),b and a & p are suitably chosen as constant such that o + g =1

Remark:

(i) if («, 8)=(1,0)& (@,b)=(1,0)then the estimator T  reduces to the usual product estimator ¥, and its

properties.

(ii) if (a,)=(0,1) & (@,b)=(1,0) then the estimator T reduces to the dual to ratio estimator y,and its

properties.
3 BIAS AND MSE OFPROPOSED ESTIMATOR ‘T ’:

To obtain the bias and MSE of T to a first degree of approximation, we write

y=Y(1+e,), X=X (1+e) such that
E

E(ej)=ﬂc2 E(ﬁ):%Cf,E(eoelF%pyXC C @

y =X
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wheref:%,cjzsj/\?{ Cf:Sf/)zz,ny=pyx%,8y2:%:(Yi—V)2/(N—1),
2
sf:i(xi X) /(N-1), sxyzi(vi—V)(xi—X)/(N—l) and p=S,,/S,S,.

i=1 i=1

Expanding the right hand side of (1) in terms of e, °s (i =0,1), we have
T =Y (1+e){a(l+pe)+(1-a)(1-¢e )} (3)
To the first degree approximation, the bias and MSE of T are respectively obtained as follows

1-f

B(T) ——Y/leXCf. 4)
211 2 2
M(T)=Y T{cywcx (/1+2ny)} (5)

Where ¢ =aX /(aX +b)and 1 = pa(1+g) —g

Differentiation of equation (5) with respect to o and equating it to zero, we get optimum value of & as

a:aopt.:(g_ny)/gp(l'i'g) (6)

Substituting (6) in (1) we get the asymptotically optimum estimator (AOE) for Y as

opt. _HQ—KyX}(aﬂLb] { Q—ny}(ai*+bﬂ
T =y — +<1- =
p(l+g)|laX +b p(l+g)|aX+b

Therefore the resulting bias and the MSE of T respectively as

1-f

B(T™)= ——YnyCf
opt. 21 f 2
M(T™)=¥?=—=CJ(1-p]) ()

The MSE equation in (7) is same as the usual linear regression estlmatorYIreg 7+byx(>?—¥), where

b,, is the sample regression coefficient y onx.

To the first degree approximation, the MSE of ¥, V., Vs, V- are

M(VR):V2${C5+CXZ(1—2KW} ®)
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M(yp):\?2${cj+cf(1+2}<yx} )
M(5:) =V* 2 {C] +gCH(g -2K . (10)
M(5:) =V* 2 {CE +gCH(g +2K . (11)

respectively.

The MSE of usual unbiased estimator Yy under SRSWOR scheme is

M(V):W%Cj (12)

4 EFFICIENCY COMPARISONS

(A) Comparison of T

In this sub-section, we have presented the comparisons of proposed estimator with other estimators to

investigate the ranges of « for which the proposed estimator is better than the others.

Now from the equations (5) and (12), we observe that the proposed estimator T is more efficient

than usual unbiased estimator y, under the condition

—2K -2K
g " g9 o9 <oc<g ~.
p(1+9) pl+g9)  ol+9) p(+9)

either

Therefore, the ranges of « under which the proposed estimator T is more efficient than the sample mean
-2K -2K
Vis{min( g ’g yXJ,max[ g ,g yx]}
p(1+9) o1+9) p(1+9) ¢(1+09)

From the equations (5) and (8), we observe that the proposed estimator T is more efficient than usual

ratio estimator yy, if

g_—1<a<(1+g)—2ny or (1+g)_2ny<a< g-1 )
o(1+9) o(1+9) o(1+9) p(1+9)

either

Therefore, the ranges of « under which the proposed estimator T is more efficient than the usual ratio

@+9)-2K, g-1 jmax[(1+g)—2l<yx g-1 j}
p(l+9) pl+g)) o(l+9) o+g)

estimator Y, is{min [
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From the equations (5) and (9), we observe that the proposed estimator T is more efficient than usual

product estimator y, , if

g—(1+2ny)< - 1+g or 1+g <Ol<g—(1+2ny).

Either a
p(1+9) p(l+9) ol+09) p(1+9)

Therefore, the ranges of ¢ under which the proposed estimator T is more efficient than the product

g-(1+2K,) 1+g }nwx{g—a+2KW) 1+g }}
p(1l+9) o+9))’ p+9) o+0)] |

estimator y,, is{min{

From the equations (5) and (10), we observe that the proposed estimator T is more efficient than dual to

ratio estimator yy, if

2(9 - ny) 2(g - ny)
or

(o(1+g) (0(1+g) a<0.

either O<a <

Therefore, the ranges of « under which the proposed estimator T is more efficient than the dual to ratio

estimator ¥, , is

. 2(9 - ny) 2(9 - ny)
min<0, ———=—/,max<0,————¢|.
o(1+9) o(1+9)
From the equations (5) and (11), we observe that the proposed estimator T is more efficient than dual to

product estimator y, , if

: 2K 29 29 2K
either — X _<ca< or <a<-— x_
p(1+09) pd+9) o1+9) o(1+9)

Therefore, the ranges of « under which the proposed estimator T is more efficient than the dual to

product estimator y, , is

il s ™ e )|
min< — , ,Max-< — , .
p(l+9) o(l+9) p(l+9) o(l+9)

(B) Comparison of T

From the equations (7), (8), (9),(10), (11),and (12), it is found that the AOE T*"is more efficient than the

estimators ¥, Vs, Vx, ¥» and ¥ ,since

V() -MT) =Vl Cl (1K, ) >0

[JCRT1134355 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 372


http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 January 2018 | ISSN: 2320-2882

- oty 21— f 2
V(¥,)-M(T p‘):YZTCf(1+KyX) >0

- 0 —1-—f 2
V(F)-MT™)=Y*=——Ci(g-K,) >0

X

V(V;)—MU°pt'):V2$Cf(g+Kw)2 >0and

_ s oal—f
V(y)-M(T Pt)zvachjx>o

Hence, the proposed estimator ‘T ’is better than the other estimators in case of its optimality.
EMPERICAL STUDY

To analyze the performance of the proposed class of estimators T (orT(opt.)) over other estimators,

eight natural population data sets have been taken into consideration. The sources of the population, the
nature of variates y and x; and the values of the various parameters are shown as follows.
Population I: [Source: Steel and Torrie, 1960, p. 282]

X : Chlorine percentage

y :Log of leaf burn in secs

N =30, n=6, Y =0.6860, X =0.8077, p, =-0.4996, C, =0.700123, C, =0.7493
Population I1: [Source: Pandey and Dubey, 1988]

N=20, n=8 Y =1955 X =188, p,=-0.9199, C,=03552 C,=0.3943
Population I11: [Source: Kadilar and Cingi, 2006a, p. 78]

N =106, n=20, Y =2212.59, X =27421.70, p, =086, C, =522, C =210
Population 1V: [Source: Kadilar and Cingi, 2006b, p. 1054]

N =106, n=20, Y =15.37, X =24376, p, =0.82, C =418, C,=2.02
Population V: [Source: Sukhatme and Sukhatme, 1970, p. 256]

X : A circle consisting more than five villages

y : Number of villages in the circles.

N =89, n=12, Y =336, X=0.1236, p, =0.766, C,=0.60400, C, =2.19012
Population V1: [Source: Maddala, 1977]

x : Deflated prices of veal

y :Consumption per capita.

N =30, n=6, Y =7.6375, X =75.4313, P, =—0.6823, C =02278, C, =0.0986
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Population VII: [Source: Murthy, 1967, p. 228]

X : Fixed capital

y : Output

N =80, n=20, Y =51.8264, X =11.2646, p, =0.9413, C, =0.3542, C, =0.7507
Population VII11: [Source: Murthy, 1967, p. 228]

X : Number of workers

y : Output

N =80, n=20, Y =51.8264, X =2.8513, p,, =0.9150, C,=0.3542, C,=0.9484

To observe the relative performance of different estimators ofY, we have computed the

percentage relative efficiencies (PRES) of these estimators with respect to y by the formula

PRE(E,V)zﬁ?E)xlOO,

Table 1: Percentage relative efficiencies of different estimators with respect to y

Population y Vs A v A T or T
| 100 * E * 124.34 133.26

I 100 * 526.50 * 537.23 650.26

Il 100 212.82 * 117.95 * 384.02

AV 100 * b 220.46 - 241.99

\Y 100 x 167.59 * 115.73 187.10

VI 100 x jad 591.38 * 877.54

Vil 100 ¥ * 612.44 * 614.34
Vil 100 226.76 * 120.73 * 305.25

*percentage relative efficiency less than 100

CONCLUSION:

Table 1 clearly indicates that the percentage relative efficiencies (PRE) of proposed estimator (T or T°)
are higher than all other estimators considered in this paper. Therefore we may conclude that the
proposed product cum dual to ratio estimator (T orT°") is more efficient than the estimators ¥y

opt.

V. Yo, V. Vs .S the proposed estimator (T orT°™) is preferable in practice.
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