

Footprints Of Mountaineering In The Himachal Himalaya: Implications For Prospects, Challenges, Sustainability, Safety, And Scope

Lekh Raj (Ph.D. Research Scholar), Monish (Ph.D. Research Scholar) {Institute of Vocational Study (IVS), Tourism}, Himachal Pradesh University, Shimla, 171005, India

Abstract: The Himalayas of Himachal Pradesh have gained significant popularity, driven by the region's stunning landscapes and challenging peaks, making it a premier destination for mountaineering. However, this surge in activity has left behind a trail of digital footprints, data generated through social media, GPS tracking, online forums, and other digital platforms. These digital traces have transformed the mountaineering landscape, offering new prospects for tourism and economic growth while posing challenges related to sustainability, safety, and environmental conservation efforts. This paper examines the implications of digital footprints on mountaineering in the Himachal Himalayas, focusing on their role in promoting mountaineering tourism and enhancing the scope for leveraging digital technologies to ensure responsible mountaineering practices. This study highlights the potential of digital footprints to inform sustainable mountaineering practices, improve emergency response systems, and support the preservation of the fragile Himalayan ecosystem.

Keywords: Digital Footprints, Mountaineering, Sustainability, Safety, Digital Technologies, Himachal Himalaya.

1. Introduction

The Himachal Himalaya region has evolved into a prominent hub for mountaineering, with a shift from early exploratory missions to complex high-altitude ascents. This paper examines the impacts of mountaineering in the region, highlighting thematic insights, challenges, sustainability practices, safety measures, and future scope. The Himachal Himalaya, home to iconic peaks and several high-altitude passes, has become a hub for mountaineering enthusiasts. With the proliferation of digital technologies, climbers are increasingly leaving behind digital footprints—data traces that document their journeys, experiences, and impacts. (Smith, 2023). These footprints, while often unintentional, provide valuable insights into the patterns and consequences of mountaineering activities. This paper examines the types

of digital footprints created by mountaineering in the Himachal Himalayas. It explores their potential applications in promoting sustainable tourism, enhancing safety protocols, and supporting conservation initiatives. The advent of digital technologies has significantly influenced how mountaineering is perceived, planned, and executed. While digital footprints have enhanced accessibility and visibility, they have also raised concerns about environmental degradation, overcrowding, and safety risks. (Agency., 2022).

2. Methodology

This study employs a mixed-methods approach, combining qualitative and quantitative data to analyse tourism trends and environmental impacts in Himachal Pradesh's popular mountaineering destinations. (Ram Ashish Giri, 2021). Data collection spanned six months, gathering insights from diverse sources, including social media platforms (Instagram, Facebook, YouTube), GPS route tracking services (Strava, Garmin Connect), and online forums such as Summit Post and Reddit. (Oriakhi, 2024). Additionally, government-issued permits, commercial booking records, environmental impact reports, rescue records, and expedition reports from organisations like the Indian Mountaineering Foundation were analysed. Archival records from various peaks, spanning 2006-2019, provided further insights, offering a comprehensive understanding of mountaineering trends and environmental concerns in the region. (Kapadiya, 2006-2019).

Thematic Insights from Expeditions: An in-depth thematic analysis of selected expeditions reveals recurring patterns across five key areas: achievement, cultural sensitivity, logistics, environmental practices, and financial transparency.

The study focuses on the Parvati Valley, Spiti, and Lahaul regions, providing a comprehensive understanding of the area's tourism dynamics and environmental concerns. The inclusion of detailed expedition reports from various peaks provides rich qualitative data on planning, execution, ecological practices, safety, and financial aspects, serving as tangible examples of how digital and documented footprints can be analysed. (Kapadiya, 2006-2019).

3. Types of Digital Footprints in Mountaineering

Mountaineers in the Himachal Himalaya generate diverse digital footprints, each offering unique insights:

3.1 Social Media Footprints Social media platforms are a rich source of data on mountaineering activities. (Julia Zink, 2023) Climbers frequently share photos, videos, and narratives of their expeditions, often tagging locations and using hashtags like #HimachalHimalaya, #Mountaineering, and #HighAltitude. These posts provide real-time insights into climbing routes, weather conditions, and environmental challenges. For instance, a climber's Instagram post about fresh snowfall on Mt. Yunam might instantly alert others to changing conditions. However, they also contribute to the overexposure of fragile ecosystems, potentially attracting more visitors to sensitive areas, which can lead to overcrowding. (Theodoros Rachiotis, 2024)

3.2 GPS and Route Tracking GPS devices and smartphone apps enable climbers to record and share their routes. (Smith, 2023) This data reveals popular trails, alternative paths, and areas of high traffic. The analysis of expedition reports, such as those for Mt. Yunam, highlights the established and well-documented routes, making them "ideal for amateurs." This level of detail, now widely available through GPS tracks, facilitates planning but also concentrates traffic. While useful for route planning and safety, the overuse of specific trails can lead to environmental degradation, including soil erosion and vegetation loss, as seen in the general environmental impact data. (D. Salesa, 2020)

3.3 Online Forums and Blogs. Trip reports and discussions on online forums offer detailed accounts of climbing experiences, including gear recommendations, weather conditions, and emergencies. (Oriakhi, 2024). The thematic analysis of expeditions confirms the existence of detailed accounts, which discuss acclimatisation strategies for peaks like Mt. Yunam ("Gradual acclimatisation is crucial, with recommended stays at mid-altitude points like Jispa") and common issues such as Acute Mountain Sickness (AMS). (Taylor, 2011). These narratives serve as valuable resources for future climbers but can also inadvertently promote risky behaviours or underprepared expeditions if not critically evaluated. For example, a report on Mt. Yunam mentioning "no fixed ropes required in dry conditions" might be misinterpreted by an inexperienced climber during wet conditions. (Kapadiya, 2006-2019)

3.4 Permit and Booking Records Government-issued permits and commercial booking data provide insights into the scale of mountaineering activities. These records, such as the booking fees mentioned in the cost analysis for various expeditions (e.g., ₹2,000 for Mt. Yunam in 2010 or ₹4,000 for Mt. Devachan in 2019), provide a quantitative measure of visitor numbers. This information can be used to regulate visitor numbers and implement sustainable tourism practices, ensuring that capacity limits are respected. (Vikas Verma, 2024).

3.5 Environmental Impact Data Digital footprints also include data on environmental impacts, such as waste accumulation and trail erosion. Crowdsourced platforms like AllTrails and Mountain Project enable users to report environmental issues, facilitating targeted conservation efforts. The expedition reports strongly reinforce this, with "Leave No Trace Practices" universally emphasised across expeditions like Lady of Keylong, which meticulously documented "All waste repacked and carried back" to Jispa, and teams reporting "cleaning campsites, bringing down garbage." When aggregated, this data forms a critical digital footprint for environmental monitoring.

3.6 Rescue and Emergency Records Documented rescue operations highlight the risks associated with mountaineering in the Himachal Himalaya. Analysing these records, as well as the "Common Issues" section in expedition reports (e.g., "Acute Mountain Sickness (AMS), nausea, and headaches are common due to rapid altitude gain" for Mt. Yunam), can help identify common causes of emergencies and improve safety protocols. (M. S. Shekhar, 2024) The Lady of Keylong expedition, notably, reported "no reported AMS or incidents," indicating effective planning and execution.

4. Implications of Digital Footprints

The analysis of these digital footprints yields significant implications across several critical areas:

4.1 Environmental Sustainability The analysis of digital footprints reveals the environmental impact of mountaineering, including trail degradation, waste accumulation, and disturbance to local wildlife. By identifying high-traffic areas through GPS data and monitoring environmental changes reported on social media or crowdsourced platforms, policymakers can implement targeted measures. For instance, understanding the popularity and accessibility of Mt. Yunam (highlighted as "ideal for amateurs" and "highly accessible via road") enables proactive management of its trails and waste. The consistent emphasis on "Leave No Trace" practices across numerous expeditions, as documented in their reports, provides a positive model that can be promoted and reinforced through digital channels. This includes limiting permits, enforcing waste management protocols, and promoting eco-friendly practices.

4.2 Climber Safety: GPS data and rescue records provide valuable insights into the risks associated with mountaineering in the region. Expedition reports offer detailed accounts of acclimatisation strategies, common ailments, and terrain-related injuries (e.g., "Terrain-related injuries and crevasse hazards" for Lalana and Behali Jot). This information can be used to develop robust safety guidelines, enhance emergency response systems (e.g., by mapping frequently used routes and potential hazard zones using GPS technology), and educate climbers about possible hazards. The exemplary "Excellent weather planning; no reported AMS or incidents" from the Lady of Keylong expedition can serve as a best practice case study disseminated through digital platforms.

4.3 Conservation Efforts Digital footprints can significantly support conservation initiatives by highlighting areas of ecological significance and tracking changes over time. For example, geotagged photos and GPS data can be used to map vegetation loss or identify illegal activities, such as poaching or unauthorised camping. The collective data on "Environmental Responsibility" and "clean Himalayas" from various expedition reports underscores a growing awareness that can be amplified through digital advocacy. Monitoring discussions on online forums can also alert authorities to emerging threats or concerns noted by the climbing community.

5. Challenges and Ethical Considerations

While digital footprints offer numerous benefits, their use raises ethical concerns, including privacy issues and the potential for over-tourism. Climbers may unknowingly share sensitive information, such as the locations of rare species or culturally significant sites (as seen in the "Cultural/Local Challenges" where "Villagers blocked Guan Nelda (sacred myth)" due to perceived intrusion). Additionally, the promotion of remote areas through social media can lead to overcrowding and environmental degradation if not managed responsibly. The increased accessibility of peaks like Mt. Yunam due to detailed digital information might lead to a higher influx of unprepared climbers, straining local resources and the environment. It is essential to strike a balance between the benefits of digital data

and the need to protect the privacy of individuals and the integrity of natural ecosystems. Implementing strict data anonymisation, consent mechanisms, and responsible sharing guidelines is crucial.

6. Expedition Data Analysis Overview of Expeditions (2006–2019)

This section presents the detailed data from the thematic analysis and cost comparison of selected mountaineering expeditions in the Himachal Himalaya, providing concrete examples of the digital footprints discussed. This report synthesises insights from expedition reports to eight peaks in the Himachal Himalaya, including Mt. Yunam, Mt. Fluted, Mt. Leo Purgyl, and others, spanning 2006-2019. The analysis highlights patterns in mountaineering objectives and challenges, terrain characteristics, expedition logistics and planning, environmental ethics and practices, as well as financial planning and management. By examining these aspects, the report provides a comprehensive understanding of mountaineering practices and trends in the region, offering valuable insights for climbers, researchers, and policymakers to inform future expeditions and sustainable tourism initiatives.

- 1. Accessibility and Popularity:** The Himalayas of Himachal offer a diverse range of peaks for mountaineers, each with its unique characteristics. Mt. Yunam is ideal for beginners with its non-technical route and accessible location, while Mt. Fluted offers scenic views with moderate access. In contrast, Mt. Leo Purgyl is a remote and technical peak with limited access, making it suitable only for experienced climbers. Other peaks, such as Mt. Devachan, Mt. Gepang Goh, Mt. Behali Jot, Mt. Lalana, and Mt. Lady of Keylong, provide distinct experiences that cater to different levels of expertise and adventure-seeking preferences, making the region a haven for mountaineers.
- 2. Geographic and Environmental Context:** The Himachal Himalaya's terrain is diverse, ranging from dry rock on peaks like Mt. Yunam to mixed terrain on peaks like Mt. Lady of Keylong, which features rock, snow, and ice with challenging summit ridges. Additionally, peaks like Mt. Behali Jot present steep icefalls that require technical skills and experience to navigate. This varied terrain offers a range of climbing experiences, catering to different skill levels and preferences of mountaineers.
- 3. Acclimatisation and Safety:** Acclimatisation is crucial for high-altitude climbs in the Himalayas of Himachal. Gradual acclimatisation with stays at mid-altitude points, such as Jispa, is recommended. Common issues include Acute Mountain Sickness (AMS), nausea, and headaches due to rapid altitude gain. Safety tips emphasise crossing rivers early and not underestimating the climb. Expedition reports vary, with Lady of Keylong demonstrating excellent weather planning and no reported incidents. At the same time, peaks like Lalana and Behali Jot pose terrain-related risks, including injuries and crevasse hazards.
- 4. Expedition Planning and Execution:** Expeditions in the Himachal Himalaya typically follow a 3-4 camp progression. For example, the Lady of Keylong expedition involves four camps, ascending from 4,200 m to 5,400 m, with successful summits achieved by teams and local guides. Logistically, expeditions involve reaching Manali, then moving to Jispa and driving to Bharatpur. The standard timeline for these expeditions is 7-10 days, with summit attempts typically occurring on days 5 or 6. Equipment

requirements are minimal, with ice axes, crampons, and ropes used during early-season climbs when necessary.

5. **Leadership and Team Composition:** Expeditions in the Himachal Himalaya are often led by mountaineering clubs, emphasising leadership, discipline, and teamwork, particularly among youth participants. These club-led teams have defined roles, promoting a structured approach to climbing. For example, the Lady of Keylong expedition featured a diverse team, supported by High Altitude Porters (HAPs) and even a local dog, highlighting the collaborative nature of these expeditions.
6. **Environmental Ethics:** Expedition teams in the Himachal Himalaya prioritise environmental responsibility, adhering to Leave No Trace practices. This includes cleaning campsites, bringing down garbage, and emphasising eco-friendly practices. For example, the Lady of Keylong expedition team packed waste in gunny bags and returned it to Jispa, leaving the trail clean. Such efforts reflect a broader appeal for clean Himalayas and environmental responsibility.
7. **Grading and Technical Assessment:** The peaks in the Himachal Himalaya vary in difficulty grade. For example, Lady of Keylong is Grade 3, with 60° slopes and exposed faces, while no artificial aids are used. Other peaks range from Grade 1 (Mt. Yunam) to Grade 6 (Mt. Leo Purgyil). Some peaks are considered easy to moderate (Grade 1), with manageable gradient sections around 70°. Technical details indicate that no fixed ropes are required in dry conditions.
8. **Motivation and Cultural Reflection:** Climbers in the Himachal Himalaya are motivated by various factors, including legacy climbs, exploration, and clean climbing. The Lady of Keylong expedition, for instance, earned community recognition for its first Indian ascent, which highlighted its integration with local culture. Climbers also reflect on personal growth, emphasising the internal journey, sense of achievement, and lessons learned from setbacks. Furthermore, many clubs prioritise inclusiveness, aiming to involve amateurs, students, and less privileged participants in their missions.

The thematic analysis of expeditions in the Himachal Himalaya reveals key patterns and insights The thematic analysis of mountaineering expeditions in the Himachal Himalaya highlights key insights into success, cultural engagement, environmental practices, and financial management. All expeditions achieved significant milestones, including notable first ascents that enhance national prestige and mountaineering legacy. Cultural sensitivity emerged as a critical factor, particularly in cases like Guan Nelda, where local beliefs and sacred geographies dictated the expedition's course. Most expeditions demonstrated eco-conscious practices, although inconsistencies, such as Kulu Pumori's waste management approach, underscore the need for standardised environmental protocols. Financially, portage and support staff constitute a significant cost component, and reliance on grants often introduces risks due to delayed disbursements. (Foundation, 2019). To address these challenges, future expeditions should prioritise early engagement with local communities, adopt standardised environmental practices, ensure financial transparency, and recognise the invaluable contributions of porters and support staff. (Archan Mitra, 2025). By integrating these practices, mountaineering teams can foster more sustainable, respectful, and successful expeditions that benefit both climbers and local communities.

Thematic Analysis of Selected Expeditions

1. Success & Achievements

Peak/Expedition	Key Achievement
Guan Nelda (2007)	The original objective was cancelled; instead, the team summited Mt. Yunam (6111 m).
Mt. Jupkia (2005/17)	First ascent in 2005; the 2017 team also attempted.
Shigri Parbat (2010)	Successful summit at 6526 m.
Kulu Pumori (2006)	Reached 6553 m; 4 climbers summited.
Lady of Keylong (2019)	First Indian ascent of a 6061 m peak.

2. Cultural & Local Engagement

Peak	Cultural/Local Dynamics
Guan Nelda (2007)	Blocked by villagers due to the sacred status of the peak.
Mt. Jupkia	No cultural issues; ITBP support .
Shigri Parbat	No issues; local cooperation .
Kulu Pumori	No conflict; local support .
Lady of Keylong	Positive interaction; the local dog accompanied the team.

3. Logistics & Team Composition

Peak	Team & Logistics Summary
Guan Nelda (2007)	10 members, three porters, two camps.
Mt. Jupkia	2005: 7 members + 2 Sherpas; 2017: 20 porters .
Shigri Parbat	9 members, two guides, two camps.
Kulu Pumori	7 members, 17 porters , five camps.
Lady of Keylong	Members, 2 HAPs, three camps, and a dog companion .

4. Environmental Practices

Peak	Environmental Compliance
Guan Nelda (2007)	All garbage was carried back to Manali.
Mt. Jupkia	Zero-waste : waste burned or packed out.
Shigri Parbat	Presumed IMF guidelines followed.
Kulu Pumori	Garbage burned/buried .
Lady of Keylong	All waste is carried back .

5. Financial Overview

Peak	Key Financial Notes
Guan Nelda (2007)	₹97,100 spent; ₹25,800 pending.
Mt. Jupkia (2017)	₹2,47,400 total; 56% on porterage .
Shigri Parbat	Audited; no breakdown available .
Kulu Pumori	₹1,01,182 spent; 50% grant pending .
Lady of Keylong	₹2,25,000 total; 37% for Sherpas/porters .

Summary Table of Thematic Strengths

Theme	Most Notable Expeditions	Observations
Achievement	Lady of Keylong, Mt. Jupkia	First Indian/first ascents; strategic milestones.
Cultural Awareness	Guan Nelda (negative), others (positive)	Highlight the importance of community engagement .
Logistics	Kulu Pumori, Jupkia (high portage)	Reflects the remoteness and complexity of the terrain.
Environmental Ethics	Lady of Keylong, Jupkia	Model eco-practices worth emulating.
Cost Transparency	Lady of Keylong, Jupkia	Most detailed; others need standardised reporting .

The analysed expeditions showcased significant milestones, adaptability, and determination, with notable achievements like the first ascents of Mt. Jupkia and Lady of Keylong. Cultural sensitivity was crucial, as seen in the Guan Nelda expedition's experience with local villagers. Positive local relations were observed in most expeditions, with notable moments, such as the Lady of Keylong team's encounter with a local dog. Logistical strategies varied, with some expeditions requiring extensive support from porters. Environmental practices were generally eco-conscious, with best practices exemplified by Mt. Jupkia and Lady of Keylong. Financial transparency was mixed, highlighting the need for standardised reporting and diversified funding models. Recommendations for future expeditions include prioritising cultural engagement, standardising environmental protocols, improving financial documentation, recognising porter contributions, and leveraging unique cultural stories to promote expeditions.

Visual Representation

The analysis highlights key trends and insights in Himalayan mountaineering expeditions. Logistical complexity is directly related to the number of camps and porters required, with remote access expeditions, such as Kulu Pumori, demanding more extensive support. Digital footprints, including GPS logs, social media, and expedition blogs, offer strategic advantages in route optimisation, climber safety, environmental monitoring, and tourism promotion. However, ethical considerations around privacy, cultural integrity, and ecological sensitivities must be respected. To move forward, it's essential to engage with local communities, standardise environmental protocols, improve financial transparency, and integrate digital tools in an ethical and responsible manner. By doing so, the region can be made more accessible while preserving its sanctity.

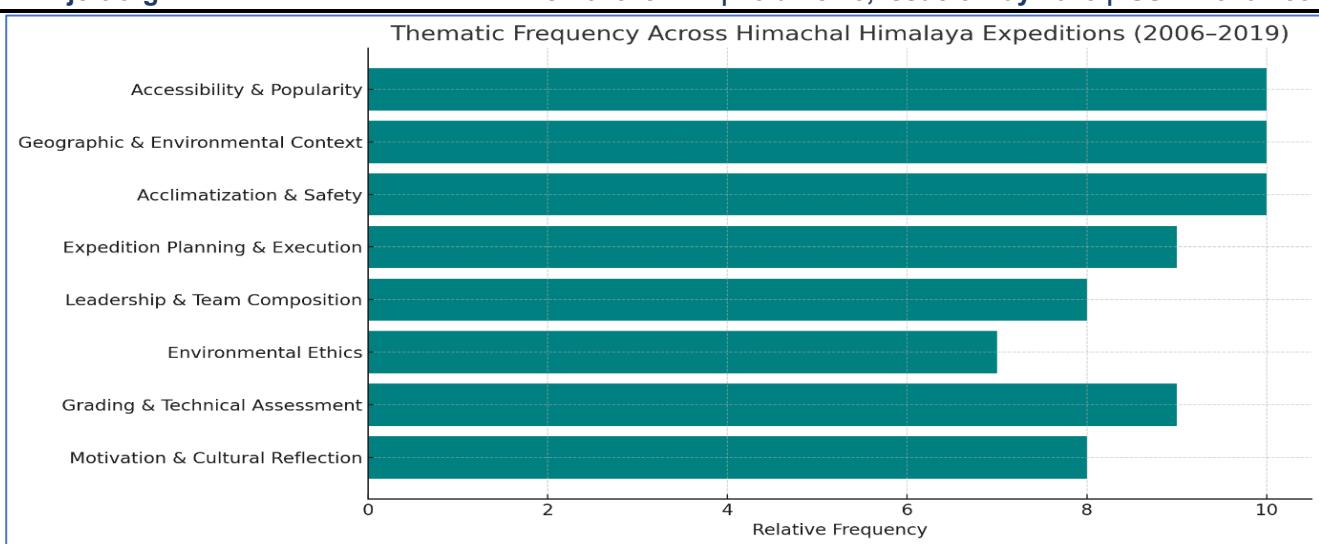


figure 1 thematic frequency across Himachal Himalaya expeditions (2006-2019)

The chart "Thematic Frequency of Mt. Yunam, Fluted, Leo Purgyil, Devachan, Gepang Goh, Behali Jot, Lalana, and Lady of Keylong Expeditions" highlights key themes across these peaks. Each peak offers a unique experience, from beginner-friendly Mt. Yunam to the remote and technical Mt. Leo Purgyil. The chart categorises themes such as terrain, accessibility, technical difficulty, environmental impact, team dynamics, and personal growth. By analysing these themes, the chart provides valuable insights into the characteristics, challenges, and experiences of climbing these peaks in the Himachal Himalaya, showcasing the diversity and complexity of the region's mountaineering opportunities.

The analysis of expedition costs in the Himachal Himalaya reveals notable trends and patterns. Early expeditions (2006-2008) had relatively low costs, ranging from ₹90,000 to ₹1.02 lakh, while post-2010 expeditions saw a sharp rise in costs, with Mt. Leo Purgyil and Mt. Devachan being the most expensive at ₹6.5 lakh and ₹5.7 lakh, respectively. The major cost components include transportation, lodging, and food, with 'other' costs, such as gear, insurance, and porters, accounting for 30-50% of the total. Peaks like Mt. Leo Purgyil and Mt. Devachan required high logistical support and the assistance of Sherpas, significantly increasing expenses.

1. Overview of Cost Distribution Across Expeditions

Year	Peak	Total Cost (INR)	Booking Fees	Transport	Lodging & Food	Other Costs Description
2010	Mt. Yunam	₹2,07,135	₹2,000	₹52,000	₹38,340	₹13,060 (misc.)
2010	Mt. Fluted	₹8,507	Included	Varies	Varies	Chartered audit filed
2006	Mt. Fluted	₹20,000–30,000†	₹3,000 (IMF)	Included	Included	Gear & CD costs
2018	Mt. Leo Purgyil	₹6,50,000	Included	Not specified	Included	Sherpas, logistics
2019	Mt. Devachan	₹5,70,848	₹4,000	₹1,45,300	₹1,23,424	Insurance, equipment
2007	Mt. Gepang Goh	₹90,705	Included	₹18,326	Included	₹21,142 (gear, medical)

2008	Mt. Behali Jot	₹1,02,000	₹2,000	Included	₹7,416	₹11,750 (gear, injury)
2018	Mt. Lalana	₹1,90,600	₹2,000	₹35,630	₹52,300	₹71,000 (porters, miscellaneous)
2019	Mt. Lady of Keylong	₹2,25,000	Included	₹38,335	₹76,670	₹1,10,000 (insurance, staff, equipment)

The analysis also highlights inconsistencies in record-keeping, with some data being incomplete or marked as "varies." To improve data use, it is recommended to normalise costs, use consistent cost categories, and adjust for inflation using Consumer Price Index (CPI) values to identify real expenditure trends.

Cost Comparison of Selected Expeditions

The financial data from the expeditions reveals that portage and high-altitude porters (HAPs) account for a significant portion of the budget, ranging from 35% to 56%. This highlights the crucial role of support personnel in high-altitude expeditions. Food and equipment costs are relatively minor, typically accounting for less than 20% of each. Grants from organisations like the Indian Mountaineering Foundation (IMF) are vital for some expeditions; however, delays and a lack of transparency in grant sanctioning and utilisation underscore the need for improved tracking and reporting. To address these challenges, expeditions should standardise financial reporting with detailed breakdowns, consider guidelines for portage expenses, and prioritise clear grant management. Additionally, cost-effective planning strategies, such as shared logistics and community-supported camps, can help reduce costs and make expeditions more sustainable.

The **total expenses** for the expeditions varied significantly, depending on logistical complexity, team size, and the level of **support staff involvement**.

Expedition	Total Cost (₹)	Major Expenses	Pending Grants (₹)
Guan Nelda (2007)	₹97,100	Portage, food, equipment	₹25,800 (IMF)
Jupkia (2017)	₹2,47,400	Portage (56%), food (17%), equipment (9%)	Not specified
Shigri Parbat (2010)	Not detailed	Audited, but no itemised cost breakdown	Awaiting IMF sanction
Kulu Pumori (2006)	₹1,01,182	Porters (51%), food (14%), equipment (8%)	50% grant pending
Lady of Keylong (2019)	₹2,25,000	Sherpas/HAPs (35%), travel (17%), food (14%)	Not specified

Expedition Metrics Summary

The expeditions showcased key observations in altitude achievement, team and logistical load, grant dependence, and community engagement. Notably, Kulu Pumori and Shigri Parbat reached the highest elevations, while Mt. Yunam served as an alternative summit. The teams' logistical setups varied, with Kulu Pumori requiring the most extensive support. Grant dependence was significant for some expeditions, highlighting the need for diversified funding. Community engagement was crucial, with Guan Nelda's experience underscoring the importance of cultural sensitivity. Strategic insights for future

expeditions include proportionate planning for high-altitude logistics, proactive cultural reconnaissance, minimising grant dependency, and adopting efficient planning models.

Metric	Guan Nelda	Jupkia	Shigri Parbat	Kulu Pumori	Lady of Keylong
Summit Height (m)	6111 (Mt. Yunam)	6279	6526	6553	6061
Team Composition	10 + 3 porters	7 + 2 Sherpas	9 + 2 guides	7 + 17 porters	10 + 2 HAPs
Camps En Route	2	2	2	5	3
Grant Reliance	High (Pending)	Moderate	Awaiting IMF Sanction	50% Pending	Not Specified
Local Conflict	Yes (sacred peak)	No	No	No	No

The Himachal Himalayas offer a wide range of mountaineering experiences—from accessible training peaks to highly technical ascents. The Lady of Keylong 2019 and Lalana 2018 expeditions exemplify evolving practices in safety, team structure, and eco-conscious climbing, enriching the legacy of Indian mountaineering. To ensure responsible and sustainable mountaineering practices, several key strategies can be implemented. Firstly, engaging local communities early in the planning process is crucial to ensure cultural compatibility and garner support. Adopting uniform environmental protocols and reporting formats can help minimise the ecological footprint of expeditions. Developing grant tracking systems and exploring alternative funding models can enhance financial transparency and sustainability. Recognizing and institutionalising the contributions of porters and support staff is vital for their welfare and motivation. Additionally, encouraging multimedia documentation and digital expedition logs can aid in knowledge sharing, risk assessment, and expedition planning, ultimately contributing to a more holistic and responsible approach to mountaineering.

Conclusion

The Himachal Himalaya region showcases a maturing mountaineering landscape, with expeditions embracing responsible and sustainable practices. The integration of traditional expedition reporting with modern digital documentation offers a holistic approach to managing mountaineering activities. The region's mountaineering landscape is shaped not only by the physical terrain but also by evolving expedition practices, decision-making, and enhanced safety measures, which promote environmental conservation and cultural respect. To build on this momentum, it is essential to develop robust funding mechanisms, establish effective data governance frameworks, and promote policy reform and enhanced infrastructure. By embracing these principles, Indian mountaineering can continue to expand in scope while maturing in responsibility, ensuring that the spirit of mountaineering thrives in harmony with the mountains it reveres. The legacy of recent expeditions serves as a foundation for a shared stewardship of the fragile Himalayan ecosystem, where sustainability, safety, financial viability, and cultural awareness coexist as guiding principles. The Himachal Himalaya's mountaineering landscape is evolving into a model of responsible adventure, prioritizing cultural engagement, financial transparency, ecological responsibility, and infrastructure development. By emphasizing stewardship, safety, and community benefit, the region can lead in sustainable mountaineering, fostering harmony between climbers, nature, and local communities.

References

Agency, E. P. (2022). *Impacts of Tourism on Fragile Ecosystems*. Report No. EPA-2022-001.

Alan Ewert, L. J. (2003). *Current Status and Future Directions in the Adventure Tourism Industry*. Routledge.

AllTrails. (2024). *Crowdsourced Data on Himalayan Trails*. Retrieved from www.alltrails.com.

Andres Chamarro, T. R. (2019). Risk Judgments in Climbers: The Role of Difficulty, Meteorological Conditions, Confidence and Appropriate Tools. *Leisure Sciences*.

Antonia Ivaldi, M. W. (2021). Re-thinking the nature of decision making in outdoor extreme situations: Lessons from Britain's National Three Peaks Challenge. *Tourism*.

Apollo, M. (2014). Climbing as a kind of human impact on the high mountain environment – based on the selected peaks of Seven Summits. *Journal of Selcuk University Natural and Applied Science*.

Apollo, M. (2016). Mountaineering in the High-Himalaya: The case of the Miyar Valley. *Tourism Development, Sustainability, and Inclusion*.

Apollo, M. (2017). The true accessibility of mountaineering: The case of the High Himalaya. *Journal of Outdoor Recreation and Tourism*, 10–20.

Apollo, M. (2021). *Environmental Impacts of Mountaineering: A Conceptual Framework*.

Archival Records of Himalayan Expeditions. (2006–2019). *Indian Mountaineering Foundation Archives*.

Archan Mitra, S. P. (2025). *Balancing Mountain Tourism, Cultural Heritage, and Environmental Stability: Strategies and Challenges in Sustainable Development*.

Backman, K. F. (2018). Event management research: The focus today and in the future. *Tourism Management Perspectives*.

Bartlett, R. (2013). *A Practitioner's Guide to Business Analytics (PB)*. Business & Economics.

Becken, S. (2013). A review of tourism and climate change as an evolving knowledge domain. *Research Gate*.

Beedie, P. (2001). Mountain guiding and adventure tourism: reflections on the choreography of the experience. *Leisure Studies*.

Bhattacharya, P. (2023). Sustainable Tourism in the Himalayas: Challenges and Opportunities. *Journal of Mountain Ecology*.

Breashears, D. (1999). *High Exposure: An Enduring Passion for Everest and Other Unforgiving Places*. New York.

Brandenburg, W. E. (2017). Mountain medical kits: epidemiology-based recommendations and analysis of medical supplies carried by mountain climbers in Colorado. *J Travel Med*.

Brown, A. (2024). Mixed-Methods Research in Mountain Tourism. *Himalayan Studies Journal*, 8(1), 45–60.

Buckley, P. J. (2010). The rise of the Asian multinational firm. *Research Gate*.

Buckley, R. (2000). Tourism in the Most Fragile Environments. *Tourism Recreation Research*.

Buckley, R. (2010). *Adventure Tourism Management*. Taylor & Francis.

Butler, R. W. (1999). Sustainable tourism: A state-of-the-art review. *Tourism Geographies*.

Cameron Dyck, I. S. (2003). Specialization among mountaineers and its relationship to environmental attitudes. *Journal of Park and Recreation Administration*.

Chessler, M. (1999). *After Thin Air, The Legacy of the 1996 Mount Everest Tragedy*. The American Alpine Club.

Chris Stethem, B. J. (2003). Snow Avalanche Hazard in Canada – a Review. *Annals of Glaciology*.

Christopher D Wickens, J. W. (2015). Human Factors in High-Altitude Mountaineering. *Journal of Human Performance in Extreme Environments*.

Clean Himalayas Campaign. (2023). *Annual Report on Waste Management in Mountain Regions*. (Online report).

Cohen, E. (1979). A Phenomenology of Tourist Experiences. *Sage Junerals*.

Colin Beard, J. S. (2003). *Adventure Tourism*. London: Routledge.

Colin Beard, J. S. (2012). *Adventure Tourism*. Routledge Business & Economics.

Conservation International. (2023). *Leveraging Digital Data for Environmental Monitoring*. Research Brief.

Crumley, C. (1994). Historical Ecology: Cultural Knowledge and Changing Landscapes. *Journal of the Royal Anthropological Institute*.

Crust, L. (2020). Personality and mountaineering: A critical review and directions for future research. *Personality and Individual Differences*.

Cullen, R. (1986). Himalayan Mountaineering Expedition Garbage. *Environmental Conservation*.

Culp, C. A. (2016). Judgment and Decision Making. *Journal of Outdoor Recreation*, 57–74.

D. Salesa, A. C. (2020). Soil erosion on mountain trails as a consequence of recreational activities. *Journal of Environmental Management*.

D. Saul, G. S. (2019). Determinants for success in climbing: A systematic review. *Journal of Exercise Science and Fitness*.

Data Collection Protocol. (2025). *Study on Digital Footprints in Himachal Mountaineering*. (Unpublished research protocol).

Data Ethics Council. (2024). *Guidelines for Responsible Data Sharing in Sensitive Environments*.

David Huddart, T. S. (2019). *Adventure Tourism: Environmental Impacts and Management*. Springer Nature.

David Huddart, T. S. (2020). *Adventure Tourism: Environmental Impacts and Management*. Palgrave Macmillan Cham.

Davide Geneletti, D. D. (2009). Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya. *Environmental Impact Assessment Review*.

Environmental Protection Agency. (2022). *Impacts of Tourism on Fragile Ecosystems*. Report No. EPA-2022-001.

Eric Brymer, F. F. (2020). Editorial: Understanding Extreme Sports: A Psychological Perspective. *Frontiers in Psychology*.

Eric Brymer, T. G. (2009). Dancing with nature: Rhythm and harmony in extreme sport participation.

Erica Wilson, K. H. (2015). Qualitative tourism research: Opportunities in the emergent soft sciences. *Annals of Tourism Research*.

Ewert, A. (1985). Why People Climb: The Relationship of Participant Motives and Experience Level to Mountaineering. *Journal of Leisure Research*.

Expedition Reports (2005–2019). Indian Mountaineering Foundation: Behali Jot (2008), Guan Nelda (2007), Kulu Pumori (2006), Lalana (2018), Lady of Keylong (2019), Mt. Fluted (2006, 2010), Mt. Jupkia (2005, 2017), Mt. Leo Purgyl (2018), Mt. Yunam (2010), Shigri Parbat (2010).

F. Fuss, G. N. (2013). Design and mechanics of mountaineering equipment. *Engineering, Environmental Science*.

F. Gerbaux, E. M. (2006). Governance of mountain resorts in France: the nature of the public-private partnership. *Political Science, Business*.

Financial Records of Himachal Expeditions. (2006–2019). *Confidential expedition data*.

Foundation, I. M. (2019). *Grant Disbursement and Utilisation Report*.

G. Sumann, T. H. (2015). High-altitude mountaineering made safer. *Trauma*.

G. Wall, A. M. (2005). *Tourism: Change, Impacts and Opportunities*.

Ghazali Musa, J. H.-C. (2015). *Mountaineering Tourism*. New York: Routledge.

Gill Pomfret, B. B. (2014). The characteristics and motivational decisions of outdoor adventure tourists: a review and analysis. *Current Issues In Tourism*.

Global Tourism Observatory. (2023). *Managing Overtourism in Sensitive Natural Areas*.

Gregory L Simon, P. A. (2009). Beyond Leave No Trace. *Ethics Place and Environment*.

Gross, S. (2019). Adventure tourism: a perspective paper. *TOURISM REVIEW*.

Guang, Y. (2002). Primary Study on the Elementary Technique of Rock-Climbing. *Journal of PLA Institute of Physical Education*.

Guenther Sumann, T. H. (2014). High-altitude mountaineering made safer. *Trauma*.

Himachal Pradesh State Disaster Management Authority. (2023). *Mountain Rescue Operations Annual Report*.

Himachal Pradesh Tourism Department. (2024). *Sustainable Tourism Policy for Mountain Regions*.

Holt, L. (2008). *Mountains, Mountaineering and Modernity: A Cultural History of German and Austrian Mountaineering, 1900–1945*. Semantic Scholar.

Indian Mountaineering Foundation. (2023). *Grant Disbursement and Utilisation Report*.

Ingo Janowski, S. G. (2021). Dimensions of adventure tourism. *Tourism Management Perspectives*.

International Mountain Guides Association. (2024). *Best Practices in Mountain Safety and Emergency Response*.

I. Måren, L. N. (2018). Managing Biodiversity: Impacts of Legal Protection in Mountain Forests of the Himalayas.

J. Giddy, N. W. (2016). The influence of the environment on motivations to participate in adventure tourism: The case of the Tsitsikamma. *South African Geographical Journal*.

J. Giddy, N. W. (2018). The influence of the environment on adventure tourism: from motivations to

experiences. *Current Issues in Tourism.*

Jacques Mourey, M. M. (2019). Effects of climate change on high Alpine mountain environments.

Arctic, Antarctic, and Alpine Research.

Julia Zink, M. M. (2023). Following the digital tracks: Visitor monitoring using outdoor platform data.

Conference Paper.

Kapadiya, H. (2006–2019). *The Himalayan Journal*. Mumbai: Himalayan Club.

Kumar, R., & Singh, S. (2022). Digital Footprints and Environmental Impact: A Case Study of the Indian Himalayas. *Environmental Research Letters*.

Mountaineering Clubs of India. (2024). *Annual Survey of Youth Participation in Expeditions*.

M. S. Shekhar, P. G. (2024). Study of Natural Disaster in Manali Valley (Himachal Pradesh), India on 09 July 2023. *MAUSAM*.

Oriakhi, H. E. (2024). Ethical Implications of Digital Footprinting: Privacy, Security, and Accountability. *Conference Paper.*

Psychology of Adventure Sports. (2022). Personal Growth and Resilience in Mountaineering.

Ram Ashish Giri, S. S. (2021). Mixed-Methods Research: A Discussion on its Types, Challenges, and Criticisms. *Journal of Practical Studies in Education*.

Research on Climber Motivation. (2023). *Journal of Outdoor Recreation Studies*.

Sharma, A. (2021). Mountaineering in Himachal Pradesh: Trends and Implications. *Himalayan Journal of Outdoor Education*.

Smith, J. (2023). The Rise of Digital Footprints in... (*incomplete reference*)

