Sum Square Difference Product Prime Labeling of Some Planar Graphs

1Sunoj B S, 2Mathew Varkey T K
1Assistant Professor, 2Assistant Professor
1Department of Mathematics,
1Government Polytechnic College, Attingal, Kerala, India

Abstract: Sum square difference product prime labeling of a graph is the labeling of the vertices with \{0,1,2--------,p-1\} and the edges with absolute difference of the square of the sums of the labels of the incident vertices and product of the labels of the incident vertices. The greatest common incidence number of a vertex (gcdin) of degree greater than one is defined as the greatest common divisor of the labels of the incident edges. If the gcdin of each vertex of degree greater than one is one, then the graph admits sum square difference product prime labeling. Here we identify some planar graphs for sum square difference product prime labeling.

IndexTerms - Prime labeling, greatest common incidence number, sum square, planar graphs.

I. INTRODUCTION

All graphs in this paper are planar. The symbol V(G) and E(G) denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p,q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [2],[3] and [4]. Some basic concepts are taken from [1] and [2]. In [5], we introduced the sum square difference product prime labeling and proved the result for some path related graphs. In this paper we investigated sum square difference product prime labeling of some planar graphs.

Definition: 1.1 Let G be a graph with p vertices and q edges. The greatest common incidence number \(gcdin\) of a vertex of degree greater than or equal to 2, is the greatest common divisor (gcd) of the labels of the incident edges.

II. MAIN RESULT

Definition 2.1 Let G = (V(G),E(G)) be a graph with p vertices and q edges. Define a bijection \(f : V(G) \rightarrow \{0,1,2,\ldots,p-1\}\) by \(f(v_i) = i-1\), for every \(i\) from 1 to \(p\) and define a 1-1 mapping \(f_{ssdppl} : E(G) \rightarrow \mathbb{N}\) by \(f_{ssdppl}(uv) = [(f(u) + f(v))]^2 - f(u)f(v)\). The induced function \(f_{ssdppl}\) is said to be sum square difference product prime labeling, if for each vertex of degree at least 2, the greatest common incidence number is 1.

Definition 2.2 A graph which admits sum square difference product prime labeling is called a sum square difference product prime graph.

Theorem 2.1 Triangular belt TB(12) admits sum square difference product prime labeling.

Proof: Let \(G = TB(12)\) and let \(v_1, v_2, \ldots, v_n\) are the vertices of \(G\) Here \(|V(G)| = 2n\) and \(|E(G)| = 4n-3\)

Define a function \(f : V \rightarrow \{0,1,2,\ldots,2n-1\}\) by

\(f(v_i) = i-1\), \(i = 1,2,\ldots,2n\)

Clearly \(f\) is a bijection.

For the vertex labeling \(f\), the induced edge labeling \(f_{ssdppl}\) is defined as follows

\[f_{ssdppl}(v_1v_{i+1}) = 3i^2-3i+1,\quad i = 1,2,\ldots,2n-1\]

\[f_{ssdppl}(v_{2i-1}v_{2i+1}) = 12i^2-12i+4,\quad i = 1,2,\ldots,n-1\]

\[f_{ssdppl}(v_{2i}v_{2i+2}) = 12i^2+1,\quad i = 1,2,\ldots,n-1\]

Clearly \(f_{ssdppl}\) is an injection.

gcin of \((v_1)\) = gcd of \{1,4\} = 1

gcin of \((v_{i+1})\) = gcd of \{\(f_{ssdppl}(v_1v_{i+1})\), \(f_{ssdppl}(v_{i+1}v_{i+2})\)\}

= gcd of \{3i^2-3i+1, 3i^2+3i+1\}

= gcd of \{6i, 3i^2-3i+1\}

= gcd of \{3i, 3i^2-3i+1\}

= gcd of \{3i, 3i(1-i)+1\}

= 1, \quad i = 1,2,\ldots,2n-2

gcin of \((v_{2n})\) = gcd of \{\(f_{ssdppl}(v_{2n-2}v_{2n})\), \(f_{ssdppl}(v_{2n-1}v_{2n})\)\}
Theorem 2.3

Hence

\[g \in \mathbb{N} \]

So, \(g \in \mathbb{N} \) of each vertex of degree greater than one is 1.

Example 2.2

\[G = TB(\uparrow \uparrow \uparrow \downarrow) \]

\[\begin{align*}
 f(v_1) &= 3i^2 - 3i + 1, & i = 1, 2, \ldots, 2n-1 \\
 f(v_2) &= 48i^2 - 60i + 21, & i = 1, 2, \ldots, n-1 \\
 f(v_3) &= 48i^2 - 12i + 3, & i = 1, 2, \ldots, n-2 \\
 f(v_4) &= 48i^2 - 48i + 13, & i = 1, 2, \ldots, \frac{n}{2} \\
 f(v_5) &= 48i^2 + 1, & i = 1, 2, \ldots, 2n-2 \\
\end{align*} \]

Case (i) \(n \) is odd

Case (ii) \(n \) is even

Clearly \(f \) is a bijection.

For the vertex labeling \(f \), the induced edge labeling \(f_{ssdppl} \) is defined as follows

\[f_{ssdppl}(v_{i+1}) = \gcd\{12n^2 - 24n + 13, 12n^2 - 18n + 7\} \]

\[f_{ssdppl}(v_i) = \gcd\{12n^2 - 24n + 13, 6n - 6\} \]

\[f_{ssdppl}(v_i) = \gcd\{(6n - 6), (2n - 2)(6n - 6) + 1\} = 1 \]

So, \(g \in \mathbb{N} \) of each vertex of degree greater than one is 1.

Hence \(TB(TB(\uparrow \downarrow \downarrow \downarrow) \) , admits sum square difference product prime labeling.

Example 2.2

\[G = TB(\uparrow \uparrow \uparrow \downarrow) \]

\[\begin{align*}
 f(v_1) &= 3i^2 - 3i + 1, & i = 1, 2, \ldots, 2n-1 \\
 f(v_2) &= 48i^2 - 60i + 21, & i = 1, 2, \ldots, n-1 \\
 f(v_3) &= 48i^2 - 12i + 3, & i = 1, 2, \ldots, n-2 \\
 f(v_4) &= 48i^2 - 48i + 13, & i = 1, 2, \ldots, \frac{n}{2} \\
 f(v_5) &= 48i^2 + 1, & i = 1, 2, \ldots, 2n-2 \\
\end{align*} \]

Clearly \(f \) is a bijection.

For the vertex labeling \(f \), the induced edge labeling \(f_{ssdppl} \) is defined as follows

\[f_{ssdppl}(v_{i+1}) = \gcd\{12n^2 - 24n + 13, 12n^2 - 18n + 7\} \]

\[f_{ssdppl}(v_i) = \gcd\{12n^2 - 24n + 13, 6n - 6\} \]

\[f_{ssdppl}(v_i) = \gcd\{(6n - 6), (2n - 2)(6n - 6) + 1\} = 1 \]

So, \(g \in \mathbb{N} \) of each vertex of degree greater than one is 1.

Hence \(TB(TB(\uparrow \downarrow \downarrow \downarrow) \) , admits sum square difference product prime labeling.

Example 2.2

\[G = TB(\uparrow \uparrow \uparrow \downarrow) \]

\[\begin{align*}
 f(v_1) &= 3i^2 - 3i + 1, & i = 1, 2, \ldots, 2n-1 \\
 f(v_2) &= 48i^2 - 60i + 21, & i = 1, 2, \ldots, n-1 \\
 f(v_3) &= 48i^2 - 12i + 3, & i = 1, 2, \ldots, n-2 \\
 f(v_4) &= 48i^2 - 48i + 13, & i = 1, 2, \ldots, \frac{n}{2} \\
 f(v_5) &= 48i^2 + 1, & i = 1, 2, \ldots, 2n-2 \\
\end{align*} \]

Theorem 2.3

The graph \(P_2 + N_m \) admits sum square difference product prime labeling.
Proof: Let G be the graph and let $v_1, v_2, \ldots, v_{m+2}$ are the vertices of G
Here $|V(G)| = m+2$ and $|E(G)| = 2m+1$
Define a function $f: V \rightarrow \{0,1,2,3,\ldots,m+1\}$ by
\[
\begin{align*}
 f(v_i) &= i+1, \quad i = 1,2,\ldots,m \\
 f(a) &= 0, \\
 f(b) &= 1.
\end{align*}
\]
Clearly f is a bijection.
For the vertex labeling f, the induced edge labeling f^{ssdppl}_{\ast} is defined as follows
\[
\begin{align*}
 f^{ssdppl}_{\ast}(av_i) &= (i+1)^2, \quad i = 1,2,\ldots,m \\
 f^{ssdppl}_{\ast}(bv_i) &= i^2+3i+3, \quad i = 1,2,\ldots,m \\
 f^{ssdppl}_{\ast}(ab) &= 1.
\end{align*}
\]
Clearly f^{ssdppl}_{\ast} is an injection
gin of $(a) = 1$.
gin of $(b) = 1$.
gin of $(v_i) = \gcd\{f^{ssdppl}_{\ast}(av_i), f^{ssdppl}_{\ast}(bv_i)\} = \gcd\{(i+1)^2, i^2+3i+3\} = \gcd\{(i+1), (i+1)(i+2)+1\} = 1, \quad i = 1,2,\ldots,m.
\]
So, gin of each vertex of degree greater than one is 1.
Hence P_2+N_m admits sum square difference product prime labeling.

Example 2.3 $G = P_2+N_4$

Theorem 2.4 The graph $PL_2(n)$ admits sum square difference product prime labeling.
Proof: Let $G = PL_2(n)$ and let $v_1, v_2, \ldots, v_{n+2}$ are the vertices of G
Here $|V(G)| = n+2$ and $|E(G)| = 3n$
Define a function $f: V \rightarrow \{0,1,2,3,\ldots,n+1\}$ by
\[
\begin{align*}
 f(v_i) &= i+1, \quad i = 1,2,\ldots,n \\
 f(a) &= 0, \\
 f(b) &= 1.
\end{align*}
\]
Clearly f is a bijection.
For the vertex labeling f, the induced edge labeling f^{ssdppl}_{\ast} is defined as follows
\[
\begin{align*}
 f^{ssdppl}_{\ast}(av_i) &= (i+1)^2, \quad i = 1,2,\ldots,n \\
 f^{ssdppl}_{\ast}(bv_i) &= i^2+3i+3, \quad i = 1,2,\ldots,n \\
 f^{ssdppl}_{\ast}(v_i v_{i+1}) &= 3i^2+9i+7, \quad i = 1,2,\ldots,n-1 \\
 f^{ssdppl}_{\ast}(ab) &= 1.
\end{align*}
\]
Clearly f^{ssdppl}_{\ast} is an injection
gin of $(a) = 1$.
gin of $(b) = 1$.
gin of $(v_i) = \gcd\{f^{ssdppl}_{\ast}(av_i), f^{ssdppl}_{\ast}(bv_i)\} = \gcd\{(i+1)^2, i^2+3i+3\} = 1, \quad i = 1,2,\ldots,n.
\]
So, gin of each vertex of degree greater than one is 1.
Hence $PL_2(n)$ admits sum square difference product prime labeling.

Example 2.4 $G = PL_2(4)$
Theorem 2.5 Jewel graph J_n admits sum square difference product prime labeling.

Proof: Let $G = J_n$ and let $v_1, v_2, \ldots, v_{n+4}$ be the vertices of G

Here $|V(G)| = n+4$ and $|E(G)| = 2n+5$

Define a function $f: V \rightarrow \{0,1,2,3,\ldots,n+3\}$ by

- $f(v_i) = i+3$, $i = 1,2,\ldots,n$
- $f(a) = 0$, $f(b) = 1$, $f(x) = 2$, $f(y) = 3$

Clearly f is a bijection.

For the vertex labeling f, the induced edge labeling f_{ssdpp}^* is defined as follows

- $f_{ssdpp}^*(av_i) = (i+3)^2$
- $f_{ssdpp}^*(bv_i) = i^2 + 7i + 13$
- $f_{ssdpp}^*(ax) = 4$
- $f_{ssdpp}^*(ay) = 9$
- $f_{ssdpp}^*(bx) = 7$
- $f_{ssdpp}^*(by) = 13$
- $f_{ssdpp}^*(xy) = 19$

Clearly f_{ssdpp}^* is an injection

- $\text{gein of (a)} = 1$
- $\text{gein of (b)} = 1$
- $\text{gein of (x)} = \gcd(4,7) = 1$
- $\text{gein of (y)} = \gcd(9,13) = 1$
- $\text{gein of (vi)} = \gcd\{f_{ssdpp}^*(av_i), f_{ssdpp}^*(bv_i)\} = \gcd\{(i+3)^2, i^2 + 7i + 13\} = \gcd\{(i+3), (i+3)(i+4)+1\} = 1$, $i = 1,2,\ldots,n$

So, gein of each vertex of degree greater than one is 1.

Hence J_n admits sum square difference product prime labeling.

Example 2.5 $G = J_3$

Theorem 2.6 Jelly fish graph $JF(m,n)$ admits sum square difference product prime labeling.
Proof: Let \(G = JF(m,n) \) and let \(v_1, v_2, \ldots, v_{n+m+4} \) are the vertices of \(G \).

Here \(|V(G)| = n+m+4 \) and \(|E(G)| = n+m+5 \).

Define a function \(f: V \rightarrow \{ 0,1,2,3,\ldots,m+n+3 \} \) by
\[
\begin{align*}
 f(v_i) &= i+3, & i &= 1,2,\ldots,m \\
 f(u_i) &= m+i+3, & i &= 1,2,\ldots,n \\
 f(a) &= 0, \\
 f(b) &= 1, \\
 f(x) &= 2, \\
 f(y) &= 3
\end{align*}
\]

Clearly \(f \) is a bijection.

For the vertex labeling \(f \), the induced edge labeling \(f_{ssdp}^* \) is defined as follows
\[
\begin{align*}
 f_{ssdp}^*(uv_i) &= (i+3)^2, & i &= 1,2,\ldots,m \\
 f_{ssdp}^*(bu_i) &= (m+i+4)^2-(m+i+3), & i &= 1,2,\ldots,n \\
 f_{ssdp}^*(ax) &= 4. \\
 f_{ssdp}^*(ay) &= 9. \\
 f_{ssdp}^*(bx) &= 7. \\
 f_{ssdp}^*(by) &= 13. \\
 f_{ssdp}^*(xy) &= 19.
\end{align*}
\]

Clearly \(f_{ssdp}^* \) is an injection

gcin of \((a)\) = 1.
gcin of \((b)\) = 1.
gcin of \((x)\) = 1.
gcin of \((y)\) = 1.

So, gcin of each vertex of degree greater than one is 1.

Hence \(JF(m,n) \), admits sum square difference product prime labeling. \(\square \)

Example 2.6 \(G = JF(3,4) \)

![Figure 2.6](image)

Theorem 2.7 Two copies of cycle \(C_n \), sharing a common edge admits sum square difference product prime labeling.

Proof: Let \(G = 2(C_n) - e \) and let \(v_1, v_2, \ldots, v_{2n-2} \) are the vertices of \(G \),

Here \(|V(G)| = 2n-2 \) and \(|E(G)| = 2n-1 \).

Define a function \(f: V \rightarrow \{ 0,1,2,3,\ldots,2n-3 \} \) by
\[
\begin{align*}
 f(v_i) &= i-1, & i &= 1,2,\ldots,2n-2
\end{align*}
\]

Clearly \(f \) is a bijection.

For the vertex labeling \(f \), the induced edge labeling \(f_{ssdp}^* \) is defined as follows
\[
\begin{align*}
 f_{ssdp}^*(uv_i) &= 3i^2-3i+1, & i &= 1,2,\ldots,2n-3 \\
 f_{ssdp}^*(v_1 v_{2n-2}) &= (2n-3)^2.
\end{align*}
\]

Case(i) n is even.
\[
\begin{align*}
 f_{ssdp}^*(v_{\frac{n+1}{2}} v_{\frac{3n-2}{2}}) &= \frac{13n^2-30n+28}{4}
\end{align*}
\]

Case(ii) n is odd.
\[
\begin{align*}
 f_{ssdp}^*(v_{\frac{n+1}{2}} v_{\frac{3n-2}{2}}) &= \frac{13n^2-26n+13}{4}
\end{align*}
\]

Clearly \(f_{ssdp}^* \) is an injection

gcin of \((v_1)\) = \(\gcd \{ f_{ssdp}^*(v_1 v_2), f_{ssdp}^*(v_1 v_{2n-2}) \} \)

\(= \gcd \{ 1, (2n-3)^2 \} = 1. \)

gcin of \((v_{2i+1})\) = 1.

gcin of \((v_{2n-2})\) = \(\gcd \{ f_{ssdp}^*(v_1 v_{2n-2}), f_{ssdp}^*(v_{2n-3} v_{2n-2}) \} \)

\(= \gcd \{ f_{ssdp}^*(v_1 v_{2n-2}), f_{ssdp}^*(v_{2n-3} v_{2n-2}) \} \)
\[
\text{gcd of } \{ (2n-3)^2, 12n^2-42n+37 \} = \text{gcd of } \{ (2n-3), (2n-3)(6n-12)+1 \} = 1.
\]

So, \text{gcd} of each vertex of degree greater than one is 1.

Hence \(2(C_n) - e\), admits sum square difference product prime labeling.

\textbf{Example 2.7} \(G = 2(C_3) - e\)

\[\text{fig - 2.7}\]

\textbf{Theorem 2.8} Two copies of cycle \(C_n\) sharing a common vertex admits sum square difference product prime labeling, when \((n-2) \not\equiv 0 \pmod{7}\) and \((n-4) \not\equiv 0 \pmod{7}\).

Proof: Let \(G = 2(C_n) - v\) and let \(v_1, v_2, \ldots, v_{2n-1}\) are the vertices of \(G\).

Here \(|V(G)| = 2n-1\) and \(|E(G)| = 2n-2\).

Define a function \(f : V \rightarrow \{0,1,2,3,\ldots,2n-2\}\) by

\[f(v_i) = i-1, \quad i = 1,2,\ldots,2n-1\]

Clearly \(f\) is a bijection.

For the vertex labeling \(f\), the induced edge labeling \(f_{ssdppl}^*\) is defined as follows

\[
f_{ssdppl}^*(v_1 v_{i+1}) = 3i^2-3i+1, \quad i = 1,2,\ldots,2n-2
\]

\[
f_{ssdppl}^*(v_1 v_n) = (n-1)^2
\]

\[
f_{ssdppl}^*(v_n v_{2n-1}) = 7n^2-14n+7
\]

Clearly \(f_{ssdppl}^*\) is an injection

\[
\text{gcd} \text{ of } (v_1) = \text{gcd of } \{ f_{ssdppl}^*(v_1 v_2), f_{ssdppl}^*(v_1 v_n) \}
\]

\[
= \text{gcd of } \{ 1, (n-1)^2 \} = 1.
\]

\[
\text{gcd} \text{ of } (v_{i+1}) = \text{gcd of } \{ f_{ssdppl}^*(v_n v_{2n-1}) \}
\]

\[
= \text{gcd of } \{ 7n^2-14n+7, 12n^2-30n+19 \}
\]

\[
= 1.
\]

So, \(f_{ssdppl}^*\) of each vertex of degree greater than one is 1.

Hence \(2(C_n) - v\), admits sum square difference product prime labeling.

\textbf{Example 2.8} \(G = 2(C_5) - v\)

\[\text{fig - 2.8}\]
REFERENCES